Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractComprehensive Assessment for the Impacts of S/IVOC Emissions from Mobile Sources on SOA Formation in China    Next Abstract"Evaluation of the nutritional value, umami taste, and volatile organic compounds of Hypsizygus marmoreus by simulated salivary digestion in vitro" »

Arab J Sci Eng


Title:Multiple Ant Colony Algorithm Combining Community Relationship Network
Author(s):Zhao J; You X; Duan Q; Liu S;
Address:"College of Electronic and Electrical Engineering, Shanghai University of Engineering Science, Shanghai, 201620 China. GRID: grid.412542.4. ISNI: 0000 0004 1772 8196 School of Management, Shanghai University of Engineering Science, Shanghai, 201620 China. GRID: grid.412542.4. ISNI: 0000 0004 1772 8196"
Journal Title:Arab J Sci Eng
Year:2022
Volume:20220218
Issue:8
Page Number:10531 - 10546
DOI: 10.1007/s13369-022-06579-x
ISSN/ISBN:2193-567X (Print) 2191-4281 (Electronic) 2191-4281 (Linking)
Abstract:"Ant colony algorithm can better deal with combinatorial optimization problems, but it is still difficult to balance the solution accuracy and convergence speed facing large-scale TSP. Nowadays, most scholars focus on the route information of better ants for improvement, while ignoring the route information of general ants with a large base. So, this study proposes the multiple ant colony algorithm combining community relationship network (CACO) by collecting route information of all ants and constructing a route relationship network to improve the accuracy of the solution. The network is divided into a number of small communities that reflect the affinity of multiple colony ants to different cities through community detection with modularity. Within the communities, CACO use the excellent roue exploration ability of the ant colony algorithm to identify high-quality route segments, integrating the pheromones of high-quality segments in the communities to provide pheromone feedback to the multiple colony ants for better route exploration. The three parts of route information collection, community detection and pheromone feedback form a feedback loop, which keeps cycling when multiple populations ants explore, and each cycle will drive the result closer to the optimal solution. Meanwhile, CACO proposes a mutual assistance strategy to improve the exploration ability of multiple colony ants by complementing each other according to the different states of superior and inferior populations. To test the performance of CACO, 28 TSP instances are compared with the well-known improved algorithms are compared and results show CACO outperforms other improved algorithms significantly, especially in large-scale TSP"
Keywords:Ant colony algorithm Community detection Modularity Route relation network Tsp;
Notes:"PubMed-not-MEDLINEZhao, Jiabo You, Xiaoming Duan, Qianqian Liu, Sheng eng Germany 2022/02/24 Arab J Sci Eng. 2022; 47(8):10531-10546. doi: 10.1007/s13369-022-06579-x. Epub 2022 Feb 18"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 15-11-2024