Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractIdentification of putative Type-I sex pheromone biosynthesis-related genes expressed in the female pheromone gland of Streltzoviella insularis    Next AbstractAntifungal activity of volatile compounds generated by endophytic fungi Sarocladium brachiariae HND5 against Fusarium oxysporum f. sp. cubense »

Chemosphere


Title:Numerical simulation of low nitrogen oxides emissions through cement precalciner structure and parameter optimization
Author(s):Yang Y; Zhang Y; Li S; Liu R; Duan E;
Address:"School of Environmental Science and Engineering, Hebei University of Science and Technology, Hebei, 050018, China; Pollution Prevention Biotechnology Laboratory of Hebei Province, Hebei, 050018, China. School of Environmental Science and Engineering, Hebei University of Science and Technology, Hebei, 050018, China; Pollution Prevention Biotechnology Laboratory of Hebei Province, Hebei, 050018, China. Electronic address: pingrenliu@163.com. School of Environmental Science and Engineering, Hebei University of Science and Technology, Hebei, 050018, China; National and Local Joint Engineering Center of Volatile Organic Compounds & Odorous Pollution Control Technology, Hebei, 050018, China"
Journal Title:Chemosphere
Year:2020
Volume:20200617
Issue:
Page Number:127420 -
DOI: 10.1016/j.chemosphere.2020.127420
ISSN/ISBN:1879-1298 (Electronic) 0045-6535 (Linking)
Abstract:"To reduce nitrogen oxides (NOx) emissions in the combustion process, the structure and parameters of a 4500 t d(-1) precalciner were optimized. The precalciner model was established using ANSYS FLUENT software (version 14.5). The effects of raw material angle, tertiary air velocity, and tertiary air temperature on NO concentration were studied. A Box-Behnken design (BBD) with three factors was employed to establish a two-order response model based on response surface methodology. The results showed that the simulated total NO concentration at outlet was 526 ppm. Compared to the monitoring data of 496 ppm, the error was within an acceptable range. The raw material angle primarily affected the generated location and rate of NO. The NO concentration at the precalciner outlet increased from 124 ppm to 220 ppm, when the tertiary air velocity increased from 22 m s(-1) to 38 m s(-1). When the temperature was 1123 K, the NO concentration rose to the highest value of 211 ppm. The interaction between the tertiary air velocity and tertiary air temperature was insignificant, while the other interactions were significant (P < 0.05). Finally, a new response surface model was obtained through optimization, which can accurately predict NO concentration. The optimum conditions for low NOx combustion were a raw material angle of 70 degrees , tertiary air velocity of 26 m s(-1), and tertiary air temperature of 1280 K"
Keywords:Air Pollutants/*analysis Nitrogen Oxides/*analysis/chemistry Temperature Cement Nitrogen oxides Numerical simulation Optimization Precalciner Response surface model;
Notes:"MedlineYang, Yu Zhang, Yan Li, Shijin Liu, Renping Duan, Erhong eng England 2020/09/20 Chemosphere. 2020 Nov; 258:127420. doi: 10.1016/j.chemosphere.2020.127420. Epub 2020 Jun 17"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 27-12-2024