Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous Abstract"Evaluation of the three-phase equilibrium method for measuring temperature dependence of internally consistent partition coefficients (K(OW), K(OA), and K(AW)) for volatile methylsiloxanes and trimethylsilanol"    Next AbstractModeling the two-locus architecture of divergent pollinator adaptation: how variation in SAD paralogs affects fitness and evolutionary divergence in sexually deceptive orchids »

BMC Plant Biol


Title:Herbivore associated elicitor-induced defences are highly specific among closely related Nicotiana species
Author(s):Xu S; Zhou W; Pottinger S; Baldwin IT;
Address:"Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knoll-Strasse 8, D-07745, Jena, Germany. sxu@ice.mpg.de. Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knoll-Strasse 8, D-07745, Jena, Germany. wzhou@ice.mpg.de. Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knoll-Strasse 8, D-07745, Jena, Germany. spottinger@ice.mpg.de. Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knoll-Strasse 8, D-07745, Jena, Germany. baldwin@ice.mpg.de"
Journal Title:BMC Plant Biol
Year:2015
Volume:20150116
Issue:
Page Number:2 -
DOI: 10.1186/s12870-014-0406-0
ISSN/ISBN:1471-2229 (Electronic) 1471-2229 (Linking)
Abstract:"BACKGROUND: Herbivore-induced defence responses are often specific - different herbivores induce different defence responses in plants - and their specificity is largely mediated by chemical cues (herbivore-associated elicitors: HAEs) in insect oral or oviposition secretions. However, the specificity and the mechanisms of HAE-induced defence have not been investigated in the context of the evolutionary relationships among plant species. Here we compare the responses of six closely related Nicotiana species to a synthetic elicitor, N-linolenoyl-glutamic acid (C18:3-Glu) and HAE of two insect herbivores (the Solanaceae specialist Manduca sexta and generalist Spodoptera littoralis). RESULTS: HAE-induced defences are highly specific among closely related Nicotiana species at three perspectives. 1) A single Nicotiana species can elicit distinct responses to different HAEs. N. pauciflora elicited increased levels of JA and trypsin proteinase inhibitors (TPI) in response to C18:3-Glu and the oral secretions of M. sexta (OS Ms ) but not to oral secretions of S. littoralis (OS Sl ). In contrast, N. miersii only responded to OS Sl but not to the other two HAEs. The specific responses to different HAEs in Nicotiana species are likely due to the perception by the plant of each specific component of the HAE. 2) One HAE can induce different defence responses among closely related Nicotiana species. OS Ms and C18:3-Glu induced JA and TPI accumulations in N. linearis, N. attenuata, N. acuminata and N. pauciflora, but not in N. miersii and N. obtusifolia. 3) The effect of HAE-induced defences differ for the Solanaceae specialist M. sexta and the generalist S. littoralis. Among the four tested Nicotiana species, while the growth rate of M. sexta was only reduced by the induced defences elicited by C18:3-Glu; the growth rate of S. littoralis can be reduced by the induced defences elicited by all three HAEs. This is likely due to differences in the susceptibility of the specialist M. sexta and generalist S. littoralis to induced defences of their host. CONCLUSIONS: Closely related Nicotiana species elicit highly specific defence responses to herbivore associated elicitors and provide an ideal framework for investigating the molecular mechanisms and evolutionary divergence of induced resistance in plants"
Keywords:"Amino Acids/metabolism Animals Cyclopentanes/metabolism Fatty Acids/metabolism Geography Herbivory/drug effects/*physiology Isoleucine/analogs & derivatives/metabolism Manduca/drug effects/physiology Models, Biological Oxylipins/metabolism Plant Growth Re;"
Notes:"MedlineXu, Shuqing Zhou, Wenwu Pottinger, Sarah Baldwin, Ian T eng 293926/ERC_/European Research Council/International Research Support, Non-U.S. Gov't England 2015/01/17 BMC Plant Biol. 2015 Jan 16; 15:2. doi: 10.1186/s12870-014-0406-0"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 27-12-2024