Title: | Aerosol effects on ozone concentrations in Beijing: a model sensitivity study |
Author(s): | Xu J; Zhang Y; Zheng S; He Y; |
Address: | "State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China. xujun@craes.org.cn" |
DOI: | 10.1016/s1001-0742(11)60811-5 |
ISSN/ISBN: | 1001-0742 (Print) 1001-0742 (Linking) |
Abstract: | "Most previous O3 simulations were based only on gaseous phase photochemistry. However, some aerosol-related processes, namely, heterogeneous reactions occurring on the aerosol surface and photolysis rate alternated by aerosol radiative influence, may affect O3 photochemistry under high aerosol loads. A three-dimensional air quality model, Models-3/Community Multi-scale Air Quality-Model of Aerosol Dynamics, Reaction, Ionization, and Dissolution, was employed to simulate the effects of the above-mentioned processes on O3 formation under typical high O3 episodes in Beijing during summer. Five heterogeneous reactions, i.e., NO2, NO3, N2O5, HO2, and O3, were individually investigated to elucidate their effects on 03 formation. The results showed that the heterogeneous reactions significantly affected O3 formation in the urban plume. NO2 heterogeneous reaction increased O3 to 90 ppb, while HO2 heterogeneous reaction decreased O3 to 33 ppb. In addition, O3 heterogeneous loss decreased O3 to 31 ppb. The effects of NO2, NO3, and N2O5 heterogeneous reactions showed opposite O3 concentration changes between the urban and extra-urban areas because of the response of the reactions to the two types of O3 formation regimes. When the aerosol radiative influence was included, the photolysis rate decreased and O3 decreased significantly to 73 ppb O3. The two aerosol-related processes should be considered in the study of O3 formation because high aerosol concentration is a ubiquitous phenomenon that affects the urban- and regional air quality in China" |
Keywords: | "Aerosols/*analysis China *Cities Computer Simulation Geography *Models, Chemical Nitrates/analysis Nitrites/analysis Nitrogen Dioxide/analysis Ozone/*analysis Photolysis Time Factors Volatile Organic Compounds/analysis Water/chemistry;" |
Notes: | "MedlineXu, Jun Zhang, Yuanhang Zheng, Shaoqing He, Youjiang eng Research Support, Non-U.S. Gov't Netherlands 2012/08/17 J Environ Sci (China). 2012; 24(4):645-56. doi: 10.1016/s1001-0742(11)60811-5" |