Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractEnhancing sludge biodegradability and volatile fatty acid production by tetrakis hydroxymethyl phosphonium sulfate pretreatment    Next Abstract"Evolution process and sources of ambient volatile organic compounds during a severe haze event in Beijing, China" »

Insects


Title:"An Advanced Numerical Trajectory Model Tracks a Corn Earworm Moth Migration Event in Texas, USA"
Author(s):Wu QL; Hu G; Westbrook JK; Sword GA; Zhai BP;
Address:"Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China. wuqiulin89@126.com. Department of Entomology, Texas A&M University, College Station, TX 77843-2475, USA. wuqiulin89@126.com. Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China. hugao@njau.edu.cn. Insect Control and Cotton Disease Research Unit, US Department of Agriculture, Agricultural Research Service, College Station, TX 77845, USA. John.Westbrook@ARS.USDA.GOV. Department of Entomology, Texas A&M University, College Station, TX 77843-2475, USA. gasword@tamu.edu. Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China. bpzhai@njau.edu.cn"
Journal Title:Insects
Year:2018
Volume:20180905
Issue:3
Page Number: -
DOI: 10.3390/insects9030115
ISSN/ISBN:2075-4450 (Print) 2075-4450 (Electronic) 2075-4450 (Linking)
Abstract:"Many methods for trajectory simulation, such as Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT), have been developed over the past several decades and contributed greatly to our knowledge in insect migratory movement. To improve the accuracy of trajectory simulation, we developed a new numerical trajectory model, in which the self-powered flight behaviors of insects are considered and trajectory calculation is driven by high spatio-temporal resolution weather conditions simulated by the Weather Research and Forecasting (WRF) model. However, a rigorous evaluation of the accuracy of different trajectory models on simulated long-distance migration is lacking. Hence, in this study our trajectory model was evaluated by a migration event of the corn earworm moth, Helicoverpazea, in Texas, USA on 20(-)22 March 1995. The results indicate that the simulated migration trajectories are in good agreement with occurrences of all pollen-marked male H.zea immigrants monitored in pheromone traps. Statistical comparisons in the present study suggest that our model performed better than the popularly-used HYSPLIT model in simulating migration trajectories of H.zea. This study also shows the importance of high-resolution atmospheric data and a full understanding of migration behaviors to the computational design of models that simulate migration trajectories of highly-flying insects"
Keywords:Helicoverpa zea Weather Research and Forecasting (WRF) model migration numerical simulation three-dimensional trajectory analysis program valuation;
Notes:"PubMed-not-MEDLINEWu, Qiu-Lin Hu, Gao Westbrook, John K Sword, Gregory A Zhai, Bao-Ping eng 201403031/Special Fund for Agro-scientific Research in the Public Interest of China/ Switzerland 2018/09/08 Insects. 2018 Sep 5; 9(3):115. doi: 10.3390/insects9030115"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 22-09-2024