Title: | First-Principles Insight into a Ru-Doped SnS(2) Monolayer as a Promising Biosensor for Exhale Gas Analysis |
Address: | "Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, China. College of Engineering and Technology, Southwest University, Chongqing 400715, China. State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, China" |
ISSN/ISBN: | 2470-1343 (Electronic) 2470-1343 (Linking) |
Abstract: | "Realizing the diagnosis of lung cancer at an inchoate stage is significant to get valuable time to conduct curative surgery. In this work, we relied on a density functional theory (DFT)-proposed Ru-SnS(2) monolayer as a novel, promising biosensor for lung cancer diagnosis through exhaled gas analysis. The results indicated that the Ru-SnS(2) monolayer has admirable adsorption performance for three typical volatile organic compounds (VOCs) of lung cancer patients, which therefore results in a remarkable change in the electronic behavior of the Ru-doped surface. As a consequence, the conductivity of the Ru-SnS(2) monolayer increases after gas adsorption based on frontier molecular orbital theory. This provides the possibility to explore the Ru-SnS(2) monolayer as a biosensor for lung cancer diagnosis at an early stage. In addition, the desorption behavior of three VOCs from the Ru-SnS(2) surface is studied as well. Our calculations aim at proposing novel sensing nanomaterials for experimentalists to facilitate the progress in lung cancer prognosis" |
Notes: | "PubMed-not-MEDLINEWan, Qianqian Chen, Xiaoqi Gui, Yingang eng 2020/04/28 ACS Omega. 2020 Apr 7; 5(15):8919-8926. doi: 10.1021/acsomega.0c00651. eCollection 2020 Apr 21" |