Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractThe effects of chemical and physical factors on mammalian embryo culture and their importance for the practice of assisted human reproduction    Next Abstract"Male-produced aggregation pheromone of the maize weevil,Sitophilus zeamais, and interspecific attraction between threeSitophilus species" »

Chem Soc Rev


Title:Gas sensing using porous materials for automotive applications
Author(s):Wales DJ; Grand J; Ting VP; Burke RD; Edler KJ; Bowen CR; Mintova S; Burrows AD;
Address:"Department of Chemical Engineering, University of Bath, Claverton Down, Bath, BA2 7AY, UK"
Journal Title:Chem Soc Rev
Year:2015
Volume:20150518
Issue:13
Page Number:4290 - 4321
DOI: 10.1039/c5cs00040h
ISSN/ISBN:1460-4744 (Electronic) 0306-0012 (Linking)
Abstract:"Improvements in the efficiency of combustion within a vehicle can lead to reductions in the emission of harmful pollutants and increased fuel efficiency. Gas sensors have a role to play in this process, since they can provide real time feedback to vehicular fuel and emissions management systems as well as reducing the discrepancy between emissions observed in factory tests and 'real world' scenarios. In this review we survey the current state-of-the-art in using porous materials for sensing the gases relevant to automotive emissions. Two broad classes of porous material - zeolites and metal-organic frameworks (MOFs) - are introduced, and their potential for gas sensing is discussed. The adsorptive, spectroscopic and electronic techniques for sensing gases using porous materials are summarised. Examples of the use of zeolites and MOFs in the sensing of water vapour, oxygen, NOx, carbon monoxide and carbon dioxide, hydrocarbons and volatile organic compounds, ammonia, hydrogen sulfide, sulfur dioxide and hydrogen are then detailed. Both types of porous material (zeolites and MOFs) reveal great promise for the fabrication of sensors for exhaust gases and vapours due to high selectivity and sensitivity. The size and shape selectivity of the zeolite and MOF materials are controlled by variation of pore dimensions, chemical composition (hydrophilicity/hydrophobicity), crystal size and orientation, thus enabling detection and differentiation between different gases and vapours"
Keywords:
Notes:"PubMed-not-MEDLINEWales, Dominic J Grand, Julien Ting, Valeska P Burke, Richard D Edler, Karen J Bowen, Chris R Mintova, Svetlana Burrows, Andrew D eng England 2015/05/20 Chem Soc Rev. 2015 Jul 7; 44(13):4290-321. doi: 10.1039/c5cs00040h. Epub 2015 May 18"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 22-09-2024