Title: | Effective photoreduction of graphene oxide for photodegradation of volatile organic compounds |
Author(s): | Tai XH; Chook SW; Lai CW; Lee KM; Yang TCK; Chong S; Juan JC; |
Address: | "Nanotechnology & Catalysis Research Centre (NANOCAT), Institute for Advanced Studies (IAS), University of Malaya Kuala Lumpur Malaysia jcjuan@um.edu.my. Department of Chemical Engineering and Biotechnology, National Taipei University of Technology Taipei Taiwan. Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia Jalan Broga 43500 Selangor Malaysia. School of Science, Monash University, Malaysia Campus Jalan Lagoon Selatan, 46150, Sunway Selangor Malaysia" |
ISSN/ISBN: | 2046-2069 (Electronic) 2046-2069 (Linking) |
Abstract: | "Nowadays, humans spend most of their time indoors and are frequently exposed to volatile organic compounds (VOCs) from various sources. The photocatalytic oxidation (PCO) method is a relatively more efficient method than the adsorption method for removing VOCs from the environment. In this work, graphene oxide (GO) was partially reduced via photoreduction under ultraviolet light (UV-A) irradiation and then used as a photocatalyst to degrade VOCs. After photoreduction, the band gap of the partially reduced graphene oxide (PRGO) decreased from 3.5-4.5 eV to 3.1-4.0 eV. Methanol vapour, which acts as a model VOC, was photodegraded using the PRGO. The effectiveness of the PRGO was mainly due to the removal of oxygen functional groups and restoration of the sp(2) domain. This lowered the band gap and slowed down the electron recombination rate, which resulted in a higher photocatalytic activity. The photocatalytic activity of PRGO followed pseudo-first order kinetics, with a rate constant of 0.0025 min(-1), and it could be reused for five cycles without any significant loss in the photocatalytic activity. This study demonstrates the potential of PRGO as a versatile and stable metal-free photocatalyst to remove indoor pollutants" |
Notes: | "PubMed-not-MEDLINETai, Xin Hong Chook, Soon Wei Lai, Chin Wei Lee, Kian Mun Yang, Thomas Chung Kuang Chong, Siewhui Juan, Joon Ching eng England 2019/06/10 RSC Adv. 2019 Jun 10; 9(31):18076-18086. doi: 10.1039/c9ra01209e. eCollection 2019 Jun 4" |