Title: | Fluorine-tailed glass fibers for adsorption of volatile perfluorinated compounds via F-F interaction |
Author(s): | Song Y; Wu Y; Wu D; Ma X; Jiang S; Peng Z; Zhang C; Yin Y; Guo R; |
Address: | "Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China. Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China. Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China. Electronic address: shaohua.jiang@njfu.edu.cn. School of Medicine, Jianghan University, Wuhan 430056, China. Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China. Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China. Electronic address: 13925825040@163.com" |
DOI: | 10.1016/j.envint.2023.108205 |
ISSN/ISBN: | 1873-6750 (Electronic) 0160-4120 (Linking) |
Abstract: | "Perfluorinated compounds (PFCs) and their short-chain derivatives are contaminants found globally. Adsorption research on volatile perfluorinated compounds (VPFCs), which are the main PFCs substances that undergo transfer and migration, is particularly important. In this study, new fluorine-containing tail materials (FCTMs) were prepared by combining fluorine-containing tail organic compounds with modified glass fibers. The adsorption effects of these FCTMs were generally stronger than that of pure activated glass fibers without fluorine- tailed, with an adsorption efficiency of up to 86% based on F-F interactions. The results showed that the FCTMs had improved desorption efficiency and reusability, and higher adsorption efficiency compared with that of polyurethane foam. FTGF was applied to the active sampler, and the indoor adsorption of perfluorovaleric acid was up to 2.45 ng/m(3). The adsorption kinetics and isotherm simulation results showed that the adsorption process of typical perfluorinated compounds conformed to the second-order kinetics and Langmuir model. Furthermore, Nuclear Magnetic Resonance (NMR) results showed that the chemical shift in the fluorine spectrum was significantly changed by F-F interactions. This research provides basic theoretical data for the study of VPFCs, especially short-chain VPFCs, facilitating improved scientific support for the gas phase analysis of VPFCs in the environment" |
Keywords: | Fluorine-containing tail materials F-F interactions Gas phase adsorption studies Modified glass fibers Volatile perfluorinated compounds; |
Notes: | "PublisherSong, Yangyang Wu, Yawen Wu, Di Ma, Xiaofan Jiang, Shaohua Peng, Zhihao Zhang, Chunmei Yin, Yongguang Guo, Rui eng Netherlands 2023/09/18 Environ Int. 2023 Sep 13; 180:108205. doi: 10.1016/j.envint.2023.108205" |