Title: | Development of Volatility Distributions for Organic Matter in Biomass Burning Emissions |
Author(s): | Sinha A; George I; Holder A; Preston W; Hays M; Grieshop AP; |
Address: | "Department of Civil and Environmental Engineering, North Carolina State University, Raleigh, NC, USA. Center for Environmental Measurement and Modeling, US Environmental Protection Agency, Durham, NC, USA. CSS Inc., Durham, NC, USA" |
ISSN/ISBN: | 2634-3606 (Electronic) 2634-3606 (Linking) |
Abstract: | "The volatility distribution of organic emissions from biomass burning and other combustion sources can determine their atmospheric evolution due to partitioning/aging. The gap between measurements and models predicting secondary organic aerosol has been partially attributed to the absence of semi- and intermediate volatility organic compounds (S/I-VOC) in models and measurements. However, S/I-VOCs emitted from these sources and typically quantified using the volatility basis framework (VBS) are not well understood. For example, the amount and composition of S/I-VOCs and their variability across different biomass burning sources such as residential woodstoves, open field burns, and laboratory simulated open burning are uncertain. To address this, a novel filter-in-tube sorbent tube sampling method collected S/I-VOC samples from biomass burning experiments for a range of fuels and combustion conditions. Filter-in-tube samples were analyzed using thermal desorption-gas chromatography-mass spectrometry (TD/GC/MS) for compounds across a wide range of volatilities (saturation concentrations; -2 |
Notes: | "PubMed-not-MEDLINESinha, Aditya George, Ingrid Holder, Amara Preston, William Hays, Michael Grieshop, Andrew P eng EPA999999/ImEPA/Intramural EPA/ England 2023/01/25 Environ Sci Atmos. 2023 Jan 1; 3(1):11-23. doi: 10.1039/d2ea00080f. Epub 2022 Oct 7" |