Title: | Induction of systemic acquired resistance in cotton foliage does not adversely affect the performance of an entomopathogen |
Author(s): | Plymale RC; Felton GW; Hoover K; |
Address: | "Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA" |
DOI: | 10.1007/s10886-007-9329-7 |
ISSN/ISBN: | 0098-0331 (Print) 0098-0331 (Linking) |
Abstract: | "Baculoviral efficacy against lepidopteran larvae is substantially impacted by the host plant. Here, we characterized how baculoviral pathogenicity to cotton-fed Heliothis virescens larvae is affected by induction of systemic acquired resistance (SAR). Numerous studies have shown that SAR induced by the plant elicitor benzo-(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester (BTH) can protect against plant pathogens, but reports on the impacts of SAR on chewing herbivores or on natural enemies of herbivores are few. We found that BTH application significantly increased foliar peroxidase activity, condensed tannin levels, and total phenolic levels but did not alter dihydroxyphenolic levels. Consumption of BTH-treated foliage did not influence H. virescens pupal weight or larval mortality by the microbial control agent Autographa californica multiple nucleopolyhedrovirus any more than did consumption of untreated foliage. Thus, activation of SAR, although it did not protect the plant against a chewing herbivore, also did not reduce the effect of a natural enemy on a herbivore, indicating that SAR and microbial control agents may be compatible components of integrated pest management" |
Keywords: | "Animals Gossypium/*parasitology Lepidoptera/*physiology/virology Nucleopolyhedroviruses/physiology Pest Control, Biological Thiadiazoles/pharmacology;" |
Notes: | "MedlinePlymale, Ruth C Felton, Gary W Hoover, Kelli eng Research Support, U.S. Gov't, Non-P.H.S. 2007/07/10 J Chem Ecol. 2007 Aug; 33(8):1570-81. doi: 10.1007/s10886-007-9329-7. Epub 2007 Jul 7" |