Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractHuman olfactory bulb: aging of glomeruli and mitral cells and a search for the accessory olfactory bulb    Next Abstract"Comparison of pheromone application rates, point source densities, and dispensing methods for mating disruption of tufted apple bud moth (Lepidoptera: Tortricidae)" »

ScientificWorldJournal


Title:Managing ammonia emissions from dairy cows by amending slurry with alum or zeolite or by diet modification
Author(s):Meisinger JJ; Lefcourt AM; Van Kessel JA; Wilkerson V;
Address:"USDA-ARS, Animal Manure and By-Product Laboratory, Beltsville, MD 20705, USA"
Journal Title:ScientificWorldJournal
Year:2001
Volume:20011027
Issue:
Page Number:860 - 865
DOI: 10.1100/tsw.2001.100
ISSN/ISBN:1537-744X (Electronic) 2356-6140 (Print) 1537-744X (Linking)
Abstract:"Animal agriculture is a significant source of atmospheric ammonia. Ammonia (NH3) volatilization represents a loss of plant available N to the farmer and a potential contributor to eutrophication in low-nitrogen input ecosystems. This research evaluated on-farm slurry treatments of alum or zeolite and compared three diets for lactating dairy cows in their effectiveness to reduce NH3 emissions. NH3 emissions were compared using a group of mobile wind tunnels. The addition of 2.5% alum or 6.25% zeolite to barn-stored dairy slurry reduced NH3 volatilization by 60% and 55%, respectively, compared to untreated slurry. The alum conserved NH3 by acidifying the slurry to below pH 5, while the zeolite conserved ammonia by lowering the solution-phase nitrogen through cation exchange. The use of alum or zeolite also reduced soluble phosphorus in the slurry. NH3 loss from fresh manure collected from lactating dairy cows was not affected by three diets containing the same level of crude protein but differing in forage source (orchardgrass silage vs. alfalfa silage) or neutral detergent fiber (NDF) content (30% vs. 35% NDF). NH3 losses from the freshly excreted manures occurred very rapidly and included the urea component plus some unidentified labile organic nitrogen sources. NH3 conservation strategies for fresh manures will have to be active within the first few hours after excretion in order to be most effective. The use of alum or zeolites as an on-farm amendment to dairy slurry offers the potential for significantly reducing NH3 emissions"
Keywords:Alum Compounds/*metabolism Ammonia/*metabolism Animals Cattle Dairying/methods/*standards Diet/*methods Manure/*analysis Time Factors Volatilization Zeolites/*metabolism;
Notes:"MedlineMeisinger, J J Lefcourt, A M Van Kessel, J A Wilkerson, V eng 2003/06/14 ScientificWorldJournal. 2001 Oct 27; 1 Suppl 2:860-5. doi: 10.1100/tsw.2001.100"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 26-12-2024