Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous Abstract"Comment on Severin, F.F., and Hyman, A.A. (2002). Pheromone induces programmed cell death in S. cerevisiae. Curr. Biol. 12, R233-R235"    Next AbstractMAP kinases with distinct inhibitory functions impart signaling specificity during yeast differentiation »

Environ Sci Technol


Title:Gas/solid partitioning of semivolatile organic compounds (SOCs) to air filters. 3. An analysis of gas adsorption artifacts in measurements of atmospheric SOCs and organic carbon (OC). WHen using teflon membrane filters and quartz fiber filters
Author(s):Mader BT; Pankow JF;
Address:"Department of Environmental Science and Engineering, Oregon Graduate Institute, Portland 97291-1000, USA"
Journal Title:Environ Sci Technol
Year:2001
Volume:35
Issue:17
Page Number:3422 - 3432
DOI: 10.1021/es0015951
ISSN/ISBN:0013-936X (Print) 0013-936X (Linking)
Abstract:"Adsorption of gaseous semivolatile organic compounds (SOCs) onto the filter(s) of a filter/sorbent sampler is a potential source of measurement error when determining specific SOCs as well as organic carbon (OC) levels in the atmosphere. This work examines partitioning to both Teflon membrane filters (TMFs) and quartz fiber filters (QFFs) for purposes of predicting the magnitude of the compound-dependent gas adsorption artifact as a function of various sampling parameters. The examination is based on values of Kp,face (m3 cm(-2)), the gas/filter partition coefficient expressed as [ng sorbed per cm2 of filter face]/[ng per m3 in the gas phase]. Values of Kp,face were calculated based on literature values of the gas/solid partition coefficient Kp,s [ng sorbed per m2 of filter]/[ng per m3 in gas phase] for the adsorption of various polycyclic aromatic hydrocarbons (PAHs), polychlorinated dibenzodioxins (PCDDs), and polychlorinated dibenzofurans (PCDFs) to TMFs, and for the adsorption of PAHs to QFFs. At relative humidity (RH) values below approximately 50%, the Kp,face values for PAHs are lower on TMFs than on ambient-backup QFFs. The gas adsorption artifact will therefore be lower for PAHs with TMFs than with QFFs under these conditions. In the past, corrections for the gas/filter adsorption artifact have been made by using a backup filter, and subtracting the mass amount of each compound found on the backup filter from the total (particle phase + sorbed on filter) amount found on the front filter. This procedure assumes that the ng cm(-2) amounts of each SOC sorbed on the front and backup filters are equal. That assumption will only be valid after both filters have reached equilibrium with each of the gaseous SOCs in the incoming sample air. The front filter will reach equilibrium first. The minimum air sample volume Vmin,f+b required to reach gas/filter sorption equilibrium with a pair of filters is 2Kp,face Afilter where Afilter (cm2) is the per-filter face area. Kp,face values, and therefore Vmin,f+b values, depend on the compound, relative humidity (RH), temperature, and filter type. Compound-dependent Vmin,f+b values are presented for PAHs and PCDD/Fs on both TMFs and QFFs. Compound-dependent equations which give the magnitude of the filter adsorption artifact are presented for a range of different sampling arrangements and circumstances. The equations are not intended for use in actually correcting field data because of uncertainties in actual field values of relevant parameters such as the compound-dependent Kp,face and gas/particle Kp values, and because of the fact that the equations assume ideal step-function chromatographic movement of gas-phase compounds through the adsorbing filter. Rather, the main utility of the equations is as guidance tools in designing field sampling efforts that utilize filter/sorbent samplers and in evaluating prior work. The results indicate that some backup-filter-based corrections described in the literature were carried out using sample volumes that were too small to allow proper correction for the gas adsorption artifactfor some specific SOCs of interest. Similar conclusions are reached regarding artifacts associated with the measurement of gaseous and particulate OC"
Keywords:"Adsorption *Artifacts Carbon/*chemistry *Environmental Monitoring Filtration Gases Membranes, Artificial Models, Theoretical *Organic Chemicals Polytetrafluoroethylene/*chemistry Quartz/*chemistry Volatilization;"
Notes:"MedlineMader, B T Pankow, J F eng Research Support, U.S. Gov't, Non-P.H.S. 2001/09/21 Environ Sci Technol. 2001 Sep 1; 35(17):3422-32. doi: 10.1021/es0015951"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 27-12-2024