Title: | Dopant Site Engineering on 2D Co(3)O(4) Enables Enhanced Toluene Oxidation in a Wide Temperature Range |
Author(s): | Li R; Huang Y; Shi X; Wang L; Li Z; Zhu D; Liang X; Cao J; Xiong Y; |
Address: | "Key Laboratory of Aerosol Chemistry & Physics, State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences (CAS), Xi'an 710061, P. R. China. CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, P. R. China. University of Chinese Academy of Sciences, Beijing 100049, P. R. China. CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, P. R. China. Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China. Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China" |
ISSN/ISBN: | 1520-5851 (Electronic) 0013-936X (Linking) |
Abstract: | "Development of cost-effective oxide catalysts holds the key to the removal of toluene, one of the most important volatile organic compounds. However, the catalysts follow varied working mechanisms at different reaction temperatures, posing a challenge to achieving efficient toluene removal over a wide temperature range. Here we report an agitation-assisted molten salt method, which achieves the rational doping on a two-dimensional Co(3)O(4) catalyst and forms two different structures of active sites to enhance catalytic oxidation of toluene in specific temperature intervals, enabling a facile tandem design for working in a wide temperature range. Specifically, Co(3)O(4) is doped with Cu at the octahedral site (Cu-Co(3)O(4)) and Zn at the tetrahedral site (Zn-Co(3)O(4)) to form Cu(Oh)-O-Co(Te) and Zn(Te)-O-Co(Oh) structures on the surface, respectively. Mechanistic studies reveal the different working mechanisms of these two active sites toward remarkable performance enhancement at specific temperature intervals, and the improved performance derived from accelerated consumption of intermediates adsorbed on the catalyst surface. Taken together, Cu-Co(3)O(4) and Zn-Co(3)O(4) achieve excellent toluene purification performance over a wide temperature range. This work provides insights into the mechanism-oriented design of active sites at the atomic level" |
Keywords: | Temperature Catalysis *Cobalt *Toluene 2D Co3O4 mechanism metal doping molten salt method tandem design toluene oxidation; |
Notes: | "MedlineLi, Rong Huang, Yu Shi, Xianjin Wang, Liqin Li, Zhiyu Zhu, Dandan Liang, Xiaoliang Cao, Junji Xiong, Yujie eng Research Support, Non-U.S. Gov't 2023/08/24 Environ Sci Technol. 2023 Sep 5; 57(35):13236-13246. doi: 10.1021/acs.est.3c03617. Epub 2023 Aug 24" |