Title: | Modeling the Effect of Relative Humidity on Adsorption Dynamics of Volatile Organic Compound onto Activated Carbon |
Author(s): | Laskar II; Hashisho Z; Phillips JH; Anderson JE; Nichols M; |
Address: | "Department of Civil and Environmental Engineering , University of Alberta , Edmonton , Alberta T6G 1H9 , Canada. Environmental Quality Office , Ford Motor Company , Dearborn , Michigan 48126 , United States. Research and Advanced Engineering , Ford Motor Company , Dearborn , Michigan 48121 , United States" |
ISSN/ISBN: | 1520-5851 (Electronic) 0013-936X (Linking) |
Abstract: | "A two-dimensional heterogeneous mathematical model was developed and validated to study the effect of relative humidity on volatile organic compound (VOC) adsorption onto activated carbon. The dynamic adsorption model consists of the macroscopic mass, momentum, and energy conservation equations and includes a multicomponent adsorption isotherm to predict the competitive adsorption equilibria between VOC and water vapor, which is described by an extended Manes method. Experimental verifications show that the model predicted the breakthrough profiles during competitive adsorption of the studied VOCs (2-propanol, acetone, n-butanol, toluene, 1,2,4-trimethylbenzene) at relative humidity range 0-95% with an overall mean relative absolute error (MRAE) of 11.8% for dry (0% RH) conditions and 17.2% for humid (55 and 95% RH) conditions, and normalized root-mean-square error (NRMSE) of 5.5 and 8.4% for dry and humid conditions, respectively. Sensitivity analysis was also conducted to test the robustness of the model in accounting for the impact of relative humidity on VOC adsorption by varying the adsorption temperature. Good agreement was observed between the experimental and simulated results with an overall MRAE of 12.4 and 7.1% for the breakthrough profiles and adsorption capacity, respectively. The model can be used to quantify the impact of carrier gas relative humidity during adsorption of contaminants from gas streams, which is useful when optimizing adsorber design and operating conditions" |
Keywords: | "Adsorption Carbon Charcoal Humidity Models, Theoretical *Volatile Organic Compounds;" |
Notes: | "MedlineLaskar, Imranul I Hashisho, Zaher Phillips, John H Anderson, James E Nichols, Mark eng Research Support, Non-U.S. Gov't 2019/02/08 Environ Sci Technol. 2019 Mar 5; 53(5):2647-2659. doi: 10.1021/acs.est.8b05664. Epub 2019 Feb 22" |