Title: | CqsA-CqsS quorum-sensing signal-receptor specificity in Photobacterium angustum |
Author(s): | Ke X; Miller LC; Ng WL; Bassler BL; |
Address: | "Department of Molecular Biology, Princeton University, Princeton, NJ, USA" |
ISSN/ISBN: | 1365-2958 (Electronic) 0950-382X (Print) 0950-382X (Linking) |
Abstract: | "Quorum sensing (QS) is a process of bacterial cell-cell communication that relies on the production, detection and population-wide response to extracellular signal molecules called autoinducers. The QS system commonly found in vibrios and photobacteria consists of the CqsA synthase/CqsS receptor pair. Vibrio cholerae CqsA/S synthesizes and detects (S)-3-hydroxytridecan-4-one (C10-CAI-1), whereas Vibrio harveyi produces and detects a distinct but similar molecule, (Z)-3-aminoundec-2-en-4-one (Ea-C8-CAI-1). To understand the signalling properties of the larger family of CqsA-CqsS pairs, here, we characterize the Photobacterium angustum CqsA/S system. Many photobacterial cqsA genes harbour a conserved frameshift mutation that abolishes CAI-1 production. By contrast, their cqsS genes are intact. Correcting the P. angustum cqsA reading frame restores production of a mixture of CAI-1 moieties, including C8-CAI-1, C10-CAI-1, Ea-C8-CAI-1 and Ea-C10-CAI-1. This signal production profile matches the P. angustum CqsS receptor ligand-detection capability. The receptor exhibits a preference for molecules with 10-carbon tails, and the CqsS Ser(168) residue governs this preference. P. angustum can overcome the cqsA frameshift to produce CAI-1 under particular limiting growth conditions presumably through a ribosome slippage mechanism. Thus, we propose that P. angustum uses CAI-1 signalling for adaptation to stressful environments" |
Keywords: | Membrane Proteins/*metabolism Pheromones/*metabolism Photobacterium/*physiology *Quorum Sensing Substrate Specificity; |
Notes: | "MedlineKe, Xiaobo Miller, Laura C Ng, Wai-Leung Bassler, Bonnie L eng HHMI/Howard Hughes Medical Institute/ R01 GM065859/GM/NIGMS NIH HHS/ T32 GM007388/GM/NIGMS NIH HHS/ 5R01GM065859/GM/NIGMS NIH HHS/ Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. England 2014/01/01 Mol Microbiol. 2014 Feb; 91(4):821-33. doi: 10.1111/mmi.12502. Epub 2014 Jan 14" |