Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractEvaluation of the evolution of increased competitive ability (EICA) hypothesis: loss of defense against generalist but not specialist herbivores    Next Abstract"Cloning and characterization of the pheromone biosynthesis activating neuropeptide receptor from the silkmoth, Bombyx mori. Significance of the carboxyl terminus in receptor internalization" »

J Cell Biol


Title:Functional significance of the variations in the geometrical organization of tight junction networks
Author(s):Hull BE; Staehelin LA;
Address:
Journal Title:J Cell Biol
Year:1976
Volume:68
Issue:3
Page Number:688 - 704
DOI: 10.1083/jcb.68.3.688
ISSN/ISBN:0021-9525 (Print) 1540-8140 (Electronic) 0021-9525 (Linking)
Abstract:"Using freeze-fracture techniques, we have examined the morpholog of tight junction networks found along the length of the alimentary tract of Xenopus laevis before and after metamorphosis. We have developed the hypothesis, based on these observations, that the geometrical organization of the network determined by the stress-induced shape changes normally experienced by the cells linked by the network. Consistent with this theory, tight junctions can be classified into two distinct types of network organization which differ in their response normal and experimentally induced stress conditions: (a) loosely interconnected networks which can stretch or compress extensively under tension, thereby adapting to stress changes in the tissue; and (b) evenly cross-linked networks which retain their basic morphology under normal stress conditions. The absorptive cells of the large intestine as well as the mucous cells of the gastrointestine or stomach are sealed by the first, flexible type of tight junction. The second type of junctional organization, the evenly cross-connected network, is found between absorptive cells of the small intestine and ciliated cells of the esophagus, and reflects in its constant morphology the relative stability of the apical region of both of these cell types. Networks intermediate between these two types arise when a cell which would normally form a lossely interconnected network borders a cell which tends to form a more evenly cross-linked network, as is found in the esophagus where ciliated and goblet cells adjoin. Despite the change in the animal's diet during metamorphosis from herbivorous to carnivorous, the basic gemetrical organization of the networks associated with each tissue of the alimentary tract remains the same"
Keywords:"Animals Epithelial Cells Epithelium/ultrastructure Esophagus/*ultrastructure Freeze Fracturing Intercellular Junctions/*ultrastructure Intestine, Large/*ultrastructure Intestine, Small/*ultrastructure Metamorphosis, Biological Xenopus;"
Notes:"MedlineHull, B E Staehelin, L A eng Research Support, U.S. Gov't, P.H.S. 1976/03/01 J Cell Biol. 1976 Mar; 68(3):688-704. doi: 10.1083/jcb.68.3.688"

 
Back to top
 
Citation: El-Sayed AM 2025. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2025 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 01-01-2025