Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractMicrobial growth with vapor-phase substrate    Next Abstract"Acyl-CoA Z9- and Z10-desaturase genes from a New Zealand leafroller moth species, Planotortrix octo" »

Int J Mol Sci


Title:Key Residues Affecting Binding Affinity of Sirex noctilio Fabricius Odorant-Binding Protein (SnocOBP9) to Aggregation Pheromone
Author(s):Hao E; Li Y; Guo B; Yang X; Lu P; Qiao H;
Address:"Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing 100083, China. Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China"
Journal Title:Int J Mol Sci
Year:2022
Volume:20220730
Issue:15
Page Number: -
DOI: 10.3390/ijms23158456
ISSN/ISBN:1422-0067 (Electronic) 1422-0067 (Linking)
Abstract:"Sirex noctilio Fabricius (Hymenoptera Siricidae) is a major quarantine pest responsible for substantial economic losses in the pine industry. To achieve better pest control, (Z)-3-decen-ol was identified as the male pheromone and used as a field chemical trapping agent. However, the interactions between odorant-binding proteins (OBPs) and pheromones are poorly described. In this study, SnocOBP9 had a higher binding affinity with Z3D (Ki = 1.53 +/- 0.09 muM) than other chemical ligands. Molecular dynamics simulation and binding mode analysis revealed that several nonpolar residues were the main drivers for hydrophobic interactions between SnocOBP9 and Z3D. Additionally, computational alanine scanning results indicated that five amino acids (MET54, PHE57, PHE71, PHE74, LEU116) in SnocOBP9 could potentially alter the binding affinity to Z3D. Finally, we used single-site-directed mutagenesis to substitute these five residues with alanine. These results imply that the five residues play crucial roles in the SnocOBP9-Z3D complex. Our research confirmed the function of SnocOBP9, uncovered the key residues involved in SnocOBP9-Z3D interactions, and provides an inspiration to improve the effects of pheromone agent traps"
Keywords:"Alanine/metabolism Animals *Hymenoptera Insect Proteins/genetics/metabolism Male Pheromones/metabolism Protein Binding *Receptors, Odorant/metabolism Sirex noctilio aggregation pheromone computational simulation fluorescence binding assay odorant-binding;"
Notes:"MedlineHao, Enhua Li, Yini Guo, Bing Yang, Xi Lu, Pengfei Qiao, Haili eng 31570643, 81774015/National Natural Science Foundation of China/ 2017YFD0600103/National Key R& D Program of China/ Switzerland 2022/08/13 Int J Mol Sci. 2022 Jul 30; 23(15):8456. doi: 10.3390/ijms23158456"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 27-12-2024