Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractThe nitrilase PtNIT1 catabolizes herbivore-induced nitriles in Populus trichocarpa    Next Abstract"Apolipophorin-III-like protein expressed in the antenna of the red imported fire ant, Solenopsis invicta Buren (Hymenoptera: Formicidae)" »

Nanoscale


Title:Environmental formaldehyde sensing at room temperature by smartphone-assisted and wearable plasmonic nanohybrids
Author(s):Guntner AT; Schenk FM;
Address:"Human-centered Sensing Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, CH-8092 Zurich, Switzerland. andregue@ethz.ch. Department of Endocrinology, Diabetology, and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), CH-8091 Zurich, Switzerland. Particle Technology Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, CH-8092 Zurich, Switzerland"
Journal Title:Nanoscale
Year:2023
Volume:20230223
Issue:8
Page Number:3967 - 3977
DOI: 10.1039/d2nr06599a
ISSN/ISBN:2040-3372 (Electronic) 2040-3364 (Print) 2040-3364 (Linking)
Abstract:"Formaldehyde is a toxic and carcinogenic indoor air pollutant. Promising for its routine detection are gas sensors based on localized surface plasmon resonance (LSPR). Such sensors trace analytes by converting tiny changes in the local dielectric environment into easily readable, optical signals. Yet, this mechanism is inherently non-selective to volatile organic compounds (like formaldehyde) and yields rarely detection limits below parts-per-million concentrations. Here, we reveal that chemical reaction-mediated LSPR with nanohybrids of Ag/AgO(x) core-shell clusters on TiO(2) enables highly selective formaldehyde sensing down to 5 parts-per-billion (ppb). Therein, AgO(x) is reduced by the formaldehyde to metallic Ag resulting in strong plasmonic signal changes, as measured by UV/Vis spectroscopy and confirmed by X-ray diffraction. This interaction is highly selective to formaldehyde over other aldehydes, alcohols, ketones, aromatic compounds (as confirmed by high-resolution mass spectrometry), inorganics, and quite robust to relative humidity changes. Since this sensor works at room temperature, such LSPR nanohybrids are directly deposited onto flexible wristbands to quantify formaldehyde between 40-500 ppb at 50% RH, even with a widely available smartphone camera (Pearson correlation coefficient r = 0.998). Such chemoresponsive coatings open new avenues for wearable devices in environmental, food, health and occupational safety applications, as demonstrated by an early field test in the pathology of a local hospital"
Keywords:Temperature *Smartphone Formaldehyde/analysis Aldehydes *Wearable Electronic Devices;
Notes:"MedlineGuntner, Andreas T Schenk, Florian M eng England 2023/02/02 Nanoscale. 2023 Feb 23; 15(8):3967-3977. doi: 10.1039/d2nr06599a"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 15-11-2024