Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractCocoa bean turning as a method for redirecting the aroma compound profile in artisanal cocoa fermentation    Next AbstractCharacterization of the END1 gene required for vacuole biogenesis and gluconeogenic growth of budding yeast »

Neuron


Title:Neurotransmitter Switching Regulated by miRNAs Controls Changes in Social Preference
Author(s):Dulcis D; Lippi G; Stark CJ; Do LH; Berg DK; Spitzer NC;
Address:"Neurobiology Section, Division of Biological Sciences and Center for Neural Circuits and Behavior, Kavli Institute for Brain and Mind, University of California San Diego, La Jolla, CA 92093-0357, USA; Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA 92093-0603, USA. Electronic address: ddulcis@ucsd.edu. Neurobiology Section, Division of Biological Sciences and Center for Neural Circuits and Behavior, Kavli Institute for Brain and Mind, University of California San Diego, La Jolla, CA 92093-0357, USA. Neurobiology Section, Division of Biological Sciences and Center for Neural Circuits and Behavior, Kavli Institute for Brain and Mind, University of California San Diego, La Jolla, CA 92093-0357, USA; Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA 92093-0603, USA. Department of Neuroscience, University of California San Diego, La Jolla, CA 92093-0649, USA"
Journal Title:Neuron
Year:2017
Volume:20170831
Issue:6
Page Number:1319 - 1333
DOI: 10.1016/j.neuron.2017.08.023
ISSN/ISBN:1097-4199 (Electronic) 0896-6273 (Print) 0896-6273 (Linking)
Abstract:"Changes in social preference of amphibian larvae result from sustained exposure to kinship odorants. To understand the molecular and cellular mechanisms of this neuroplasticity, we investigated the effects of olfactory system activation on neurotransmitter (NT) expression in accessory olfactory bulb (AOB) interneurons during development. We show that protracted exposure to kin or non-kin odorants changes the number of dopamine (DA)- or gamma aminobutyric acid (GABA)-expressing neurons, with corresponding changes in attraction/aversion behavior. Changing the relative number of dopaminergic and GABAergic AOB interneurons or locally introducing DA or GABA receptor antagonists alters kinship preference. We then isolate AOB microRNAs (miRs) differentially regulated across these conditions. Inhibition of miR-375 and miR-200b reveals that they target Pax6 and Bcl11b to regulate the dopaminergic and GABAergic phenotypes. The results illuminate the role of NT switching governing experience-dependent social preference. VIDEO ABSTRACT"
Keywords:Animals Choice Behavior/*physiology Dopamine/*biosynthesis/physiology Dopamine Antagonists/pharmacology GABA Antagonists/pharmacology Interneurons/physiology MicroRNAs/antagonists & inhibitors/metabolism/*physiology Neurons/metabolism/physiology Neurotran;neuroscience;
Notes:"MedlineDulcis, Davide Lippi, Giordano Stark, Christiana J Do, Long H Berg, Darwin K Spitzer, Nicholas C eng R01 NS012601/NS/NINDS NIH HHS/ R01 NS015918/NS/NINDS NIH HHS/ R01 NS057690/NS/NINDS NIH HHS/ Video-Audio Media 2017/09/05 Neuron. 2017 Sep 13; 95(6):1319-1333.e5. doi: 10.1016/j.neuron.2017.08.023. Epub 2017 Aug 31"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 27-12-2024