Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractVolatile organic compounds (VOCs) produced by biocontrol yeasts    Next AbstractThe use of push-pull strategies in integrated pest management »

Mol Cell Biol


Title:Posttranslational regulation of Ty1 retrotransposition by mitogen-activated protein kinase Fus3
Author(s):Conte D; Barber E; Banerjee M; Garfinkel DJ; Curcio MJ;
Address:"Molecular Genetics Program, Wadsworth Center & School of Public Health, State University of New York at Albany, 12201-2002, USA"
Journal Title:Mol Cell Biol
Year:1998
Volume:18
Issue:5
Page Number:2502 - 2513
DOI: 10.1128/MCB.18.5.2502
ISSN/ISBN:0270-7306 (Print) 1098-5549 (Electronic) 0270-7306 (Linking)
Abstract:"Ty1 retrotransposons in Saccharomyces cerevisiae are maintained in a state of transpositional dormancy. We isolated a mutation, rtt100-1, that increases the transposition of genomic Ty1 elements 18- to 56-fold but has little effect on the transposition of related Ty2 elements. rtt100-1 was shown to be a null allele of the FUS3 gene, which encodes a haploid-specific mitogen-activated protein kinase. In fus3 mutants, the levels of Ty1 RNA, protein synthesis, and proteolytic processing were not altered relative to those in FUS3 strains but steady-state levels of TyA, integrase, and reverse transcriptase proteins and Ty1 cDNA were all increased. These findings suggest that Fus3 suppresses Ty1 transposition by destabilizing viruslike particle-associated proteins. The Fus3 kinase is activated through the mating-pheromone response pathway by phosphorylation at basal levels in naive cells and at enhanced levels in pheromone-treated cells. We demonstrate that suppression of Ty1 transposition in naive cells requires basal levels of Fus3 activation. Substitution of conserved amino acids required for activation of Fus3 derepressed Ty1 transposition. Moreover, epistasis analyses revealed that components of the pheromone response pathway that act upstream of Fus3, including Ste4, Ste5, Ste7, and Ste11, are required for the posttranslational suppression of Ty1 transposition by Fus3. The regulation of Ty1 transposition by Fus3 provides a haploid-specific mechanism through which environmental signals can modulate the levels of retrotransposition"
Keywords:"Calcium-Calmodulin-Dependent Protein Kinases/genetics/*metabolism DNA, Complementary/metabolism DNA, Fungal/metabolism Fungal Proteins/genetics/*metabolism Haploidy Integrases/metabolism Mating Factor *Mitogen-Activated Protein Kinases Mutation Peptides P;"
Notes:"MedlineConte, D Jr Barber, E Banerjee, M Garfinkel, D J Curcio, M J eng R01 GM052072/GM/NIGMS NIH HHS/ GM52072/GM/NIGMS NIH HHS/ Research Support, U.S. Gov't, P.H.S. 1998/05/05 Mol Cell Biol. 1998 May; 18(5):2502-13. doi: 10.1128/MCB.18.5.2502"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 26-12-2024