Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractFe(3)O(4)@uio66 core-shell composite for detection of electrolyte leakage from lithium-ion batteries    Next Abstract[Analysis of volatile constituents of root and rhizome of Asarum heterotropoides Fr. var. mandshuricum (Maxim.) Kitag. by gas chromatography-mass spectrometry] »

Sensors (Basel)


Title:Field Deployment of a Portable Optical Spectrometer for Methane Fugitive Emissions Monitoring on Oil and Gas Well Pads
Author(s):Zhang EJ; Teng CC; van Kessel TG; Klein L; Muralidhar R; Wysocki G; Green WMJ;
Address:"IBM Thomas J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, NY 10598, USA. eric.jh.zhang@ibm.com. Department of Electrical Engineering, Princeton University, Princeton, NJ 08544, USA. ccteng@princeton.edu. IBM Thomas J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, NY 10598, USA. tvk@us.ibm.com. IBM Thomas J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, NY 10598, USA. kleinl@us.ibm.com. IBM Thomas J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, NY 10598, USA. muralidr@us.ibm.com. Department of Electrical Engineering, Princeton University, Princeton, NJ 08544, USA. gwysocki@princeton.edu. IBM Thomas J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, NY 10598, USA. wgreen@us.ibm.com"
Journal Title:Sensors (Basel)
Year:2019
Volume:20190616
Issue:12
Page Number: -
DOI: 10.3390/s19122707
ISSN/ISBN:1424-8220 (Electronic) 1424-8220 (Linking)
Abstract:"We present field deployment results of a portable optical absorption spectrometer for localization and quantification of fugitive methane (CH(4)) emissions. Our near-infrared sensor targets the 2nu(3) R(4) CH(4) transition at 6057.1 cm(-1) (1651 nm) via line-scanned tunable diode-laser absorption spectroscopy (TDLAS), with Allan deviation analysis yielding a normalized 2.0 ppmv?O+Hz(-1/2) sensitivity (4.5 x 10(-6) Hz(-1/2) noise-equivalent absorption) over 5 cm open-path length. Controlled CH(4) leak experiments are performed at the METEC CSU engineering facility, where concurrent deployment of our TDLAS and a customized volatile organic compound (VOC) sensor demonstrates good linear correlation (R(2) = 0.74) over high-flow (>60 SCFH) CH(4) releases spanning 4.4 h. In conjunction with simultaneous wind velocity measurements, the leak angle-of-arrival (AOA) is ascertained via correlation of CH(4) concentration and wind angle, demonstrating the efficacy of single-sensor line-of-sight (LOS) determination of leak sources. Source magnitude estimation based on a Gaussian plume model is demonstrated, with good correspondence (R(2) = 0.74) between calculated and measured release rates"
Keywords:Gaussian plume model absorption spectroscopy angle-of-arrival diode laser fugitive emissions infrared methane natural gas source estimation;
Notes:"PubMed-not-MEDLINEZhang, Eric J Teng, Chu C van Kessel, Theodore G Klein, Levente Muralidhar, Ramachandran Wysocki, Gerard Green, William M J eng DE-AR0000540/Advanced Research Projects Agency - Energy/ Switzerland 2019/06/19 Sensors (Basel). 2019 Jun 16; 19(12):2707. doi: 10.3390/s19122707"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 28-12-2024