Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous Abstract"Characterization of volatile components in makgeolli, a traditional Korean rice wine, with or without pasteurization, during storage"    Next Abstract"An abundant acyl-CoA (Delta9) desaturase transcript in pheromone glands of the cabbage moth, Mamestra brassicae, encodes a catalytically inactive protein" »

ACS Appl Mater Interfaces


Title:Nonstoichiometric Co-rich ZnCo2O4 Hollow Nanospheres for High Performance Formaldehyde Detection at ppb Levels
Author(s):Park HJ; Kim J; Choi NJ; Song H; Lee DS;
Address:"IT Convergence Technology Research Laboratory and Convergence Components & Materials Research Laboratory, Electronics and Telecommunications Research Institute , Daejeon 34129, Republic of Korea. Department of Chemistry, Korea Advanced Institute of Science and Technology, and Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (ibs) , Daejeon 34141, Republic of Korea"
Journal Title:ACS Appl Mater Interfaces
Year:2016
Volume:20160129
Issue:5
Page Number:3233 - 3240
DOI: 10.1021/acsami.5b10862
ISSN/ISBN:1944-8252 (Electronic) 1944-8244 (Linking)
Abstract:"Since metal oxide semiconductors were investigated as chemiresistors, rapid advances have been reported in this field. However, better performance metrics are still required, such as higher sensitivity and selectivity levels for practical applications. To improve the sensing performance, we discuss an optimal composition of the active sensing material, nonstoichiometric Co-rich ZnCo2O4, prepared by the partial substitution of Co(2+) into Zn(2+) in Co3O4 without altering a hollow sphere morphology. Remarkably, this Co-rich ZnCo2O4 phase achieved detection limits for formaldehyde as low as 13 ppb in experimental measurements and 2 ppb in theory, which were the lowest values ever reported from actual measurements at a working temperature of 225 degrees C. It was also unprecedented that the selectivity for formaldehyde was greatly enhanced with respect to the selectivity levels against other volatile organic compounds (VOCs). These excellent sensing performances are due to the optimal composition of the Co-rich ZnCo2O4 material with a proper hole concentration and well-organized conductive network"
Keywords:ZnCo2O4 formaldehyde sensing hollow nanosphere ppb level selectivity;
Notes:"PubMed-not-MEDLINEPark, Hyung Ju Kim, Jinmo Choi, Nak-Jin Song, Hyunjoon Lee, Dae-Sik eng Research Support, Non-U.S. Gov't 2016/01/23 ACS Appl Mater Interfaces. 2016 Feb 10; 8(5):3233-40. doi: 10.1021/acsami.5b10862. Epub 2016 Jan 29"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 27-12-2024