Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractEffect of the Dispersion Process and Nanoparticle Quality on Chemical Sensing Performance    Next AbstractNoninvasive Detection of Stress by Biochemical Profiles from the Skin »

ACS Sens


Title:Continuous Monitoring of Psychosocial Stress by Non-Invasive Volatilomics
Author(s):Mansour E; Saliba W; Broza YY; Frankfurt O; Zuri L; Ginat K; Palzur E; Shamir A; Haick H;
Address:"The Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel. Maale Hacarmel Mental Health Center, Tirat Carmel 3911917, Israel. Mazor Mental Health Center, Akko 2423314, Israel. Eliachar Research Laboratory, Galilee Medical Center, P.O. Box 21, Nahariya 2210001, Israel. Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3200003, Israel. The Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel"
Journal Title:ACS Sens
Year:2023
Volume:20230726
Issue:8
Page Number:3215 - 3224
DOI: 10.1021/acssensors.3c00945
ISSN/ISBN:2379-3694 (Electronic) 2379-3694 (Linking)
Abstract:"Stress is becoming increasingly commonplace in modern times, making it important to have accurate and effective detection methods. Currently, detection methods such as self-evaluation and clinical questionnaires are subjective and unsuitable for long-term monitoring. There have been significant studies into biomarkers such as HRV, cortisol, electrocardiography, and blood biomarkers, but the use of multiple electrodes for electrocardiography or blood tests is impractical for real-time stress monitoring. To this end, there is a need for non-invasive sensors to monitor stress in real time. This study looks at the possibility of using breath and skin VOC fingerprinting as stress biomarkers. The Trier social stress test (TSST) was used to induce acute stress and HRV, cortisol, and anxiety levels were measured before, during, and after the test. GC-MS and sensor array were used to collect and measure VOCs. A prediction model found eight different stress-related VOCs with an accuracy of up to 78%, and a molecularly capped gold nanoparticle-based sensor revealed a significant difference in breath VOC fingerprints between the two groups. These stress-related VOCs either changed or returned to baseline after the stress induction, suggesting different metabolic pathways at different times. A correlation analysis revealed an association between VOCs and cortisol levels and a weak correlation with either HRV or anxiety levels, suggesting that VOCs may include complementary information in stress detection. This study shows the potential of VOCs as stress biomarkers, paving the way into developing a real-time, objective, non-invasive stress detection tool for well-being and early detection of stress-related diseases"
Keywords:"*Volatile Organic Compounds/analysis Hydrocortisone Gold Breath Tests/methods *Metal Nanoparticles Biomarkers/analysis Stress, Psychological/diagnosis psychosocial sensor skin stress volatile organic compound;"
Notes:"MedlineMansour, Elias Saliba, Walaa Broza, Yoav Y Frankfurt, Ora Zuri, Liat Ginat, Karen Palzur, Eilam Shamir, Alon Haick, Hossam eng Research Support, Non-U.S. Gov't 2023/07/26 ACS Sens. 2023 Aug 25; 8(8):3215-3224. doi: 10.1021/acssensors.3c00945. Epub 2023 Jul 26"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 27-12-2024