Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractThe impact of biochemistry vs. population membership on floral scent profiles in colour polymorphic Hesperis matronalis    Next Abstract"Effects of China's current Air Pollution Prevention and Control Action Plan on air pollution patterns, health risks and mortalities in Beijing 2014-2018" »

Nanoscale Adv


Title:Metal-organic frameworks for advanced transducer based gas sensors: review and perspectives
Author(s):Majhi SM; Ali A; Rai P; Greish YE; Alzamly A; Surya SG; Qamhieh N; Mahmoud ST;
Address:"Department of Physics, College of Science, United Arab Emirates University Al-Ain 15551 United Arab Emirates saleh.thaker@uaeu.ac.ae. Zoological Survey of India Kolkata 700053 India. Department of Chemistry, College of Science, United Arab Emirates University Al-Ain 15551 United Arab Emirates. Sensors Lab, Advanced Membranes & Porous Materials Center (AMPMC), CEMSE, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia. Sensor Group, R&D Section, Dyson Tech. Limited Malmesbury UK"
Journal Title:Nanoscale Adv
Year:2022
Volume:20211213
Issue:3
Page Number:697 - 732
DOI: 10.1039/d1na00798j
ISSN/ISBN:2516-0230 (Electronic) 2516-0230 (Linking)
Abstract:"The development of gas sensing devices to detect environmentally toxic, hazardous, and volatile organic compounds (VOCs) has witnessed a surge of immense interest over the past few decades, motivated mainly by the significant progress in technological advancements in the gas sensing field. A great deal of research has been dedicated to developing robust, cost-effective, and miniaturized gas sensing platforms with high efficiency. Compared to conventional metal-oxide based gas sensing materials, metal-organic frameworks (MOFs) have garnered tremendous attention in a variety of fields, including the gas sensing field, due to their fascinating features such as high adsorption sites for gas molecules, high porosity, tunable morphologies, structural diversities, and ability of room temperature (RT) sensing. This review summarizes the current advancement in various pristine MOF materials and their composites for different electrical transducer-based gas sensing applications. The review begins with a discussion on the overview of gas sensors, the significance of MOFs, and their scope in the gas sensing field. Next, gas sensing applications are divided into four categories based on different advanced transducers: chemiresistive, capacitive, quartz crystal microbalance (QCM), and organic field-effect transistor (OFET) based gas sensors. Their fundamental concepts, gas sensing ability towards various gases, sensing mechanisms, and their advantages and disadvantages are discussed. Finally, this review is concluded with a summary, existing challenges, and future perspectives"
Keywords:
Notes:"PubMed-not-MEDLINEMajhi, Sanjit Manohar Ali, Ashraf Rai, Prabhakar Greish, Yaser E Alzamly, Ahmed Surya, Sandeep G Qamhieh, Naser Mahmoud, Saleh T eng Review England 2022/09/23 Nanoscale Adv. 2021 Dec 13; 4(3):697-732. doi: 10.1039/d1na00798j. eCollection 2022 Feb 1"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 27-12-2024