Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous Abstract"Fire, nitrogen, and defensive plasticity in Nicotiana attenuata"    Next AbstractIdentification of a Male-Produced Volatile Pheromone for Phymatodes dimidiatus (Coleoptera: Cerambycidae) and Seasonal Flight Phenology of Four Phymatodes Species Endemic to the North American Intermountain West »

Environ Sci Technol


Title:Aerial Surveys of Elevated Hydrocarbon Emissions from Oil and Gas Production Sites
Author(s):Lyon DR; Alvarez RA; Zavala-Araiza D; Brandt AR; Jackson RB; Hamburg SP;
Address:"Environmental Defense Fund , 301 Congress Avenue, Suite 1300, Austin, Texas 78701, United States. Environmental Dynamics Program, University of Arkansas , Fayetteville, Arkansas 72701, United States. Department of Energy Resources Engineering, Stanford University , Stanford, California 94305, United States. Department of Earth System Science, Woods Institute for the Environment, and Precourt Institute for Energy, Stanford University , Stanford, California 94305, United States"
Journal Title:Environ Sci Technol
Year:2016
Volume:20160415
Issue:9
Page Number:4877 - 4886
DOI: 10.1021/acs.est.6b00705
ISSN/ISBN:1520-5851 (Electronic) 0013-936X (Linking)
Abstract:"Oil and gas (O&G) well pads with high hydrocarbon emission rates may disproportionally contribute to total methane and volatile organic compound (VOC) emissions from the production sector. In turn, these emissions may be missing from most bottom-up emission inventories. We performed helicopter-based infrared camera surveys of more than 8000 O&G well pads in seven U.S. basins to assess the prevalence and distribution of high-emitting hydrocarbon sources (detection threshold approximately 1-3 g s(-1)). The proportion of sites with such high-emitting sources was 4% nationally but ranged from 1% in the Powder River (Wyoming) to 14% in the Bakken (North Dakota). Emissions were observed three times more frequently at sites in the oil-producing Bakken and oil-producing regions of mixed basins (p < 0.0001, chi(2) test). However, statistical models using basin and well pad characteristics explained 14% or less of the variance in observed emission patterns, indicating that stochastic processes dominate the occurrence of high emissions at individual sites. Over 90% of almost 500 detected sources were from tank vents and hatches. Although tank emissions may be partially attributable to flash gas, observed frequencies in most basins exceed those expected if emissions were effectively captured and controlled, demonstrating that tank emission control systems commonly underperform. Tanks represent a key mitigation opportunity for reducing methane and VOC emissions"
Keywords:*Air Pollutants *Hydrocarbons Methane Surveys and Questionnaires Wyoming;
Notes:"MedlineLyon, David R Alvarez, Ramon A Zavala-Araiza, Daniel Brandt, Adam R Jackson, Robert B Hamburg, Steven P eng Research Support, Non-U.S. Gov't 2016/04/06 Environ Sci Technol. 2016 May 3; 50(9):4877-86. doi: 10.1021/acs.est.6b00705. Epub 2016 Apr 15"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 26-12-2024