Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractQuantitating Organoleptic Volatile Phenols in Smoke-Exposed Vitis vinifera Berries    Next AbstractVolatile and semivolatile organic compound emissions from polymers used in commercial products during thermal degradation »

Planta


Title:Smoke from simulated forest fire alters secondary metabolites in Vitis vinifera L. berries and wine
Author(s):Noestheden M; Noyovitz B; Riordan-Short S; Dennis EG; Zandberg WF;
Address:"Department of Chemistry, University of British Columbia, 3247 University Way, Kelowna, BC, V1V 1V7, Canada. Supra Research and Development, 4532 Sallows Road, Kelowna, BC, V1W 4C2, Canada. Department of Chemistry, University of British Columbia, 3247 University Way, Kelowna, BC, V1V 1V7, Canada. wesley.zandberg@ubc.ca"
Journal Title:Planta
Year:2018
Volume:20180827
Issue:6
Page Number:1537 - 1550
DOI: 10.1007/s00425-018-2994-7
ISSN/ISBN:1432-2048 (Electronic) 0032-0935 (Linking)
Abstract:"The exposure of Vitis vinifera L. berries to forest fire smoke changes the concentration of phenylpropanoid metabolites in berries and the resulting wine. The exposure of Vitis vinifera L. berries (i.e., wine grapes) to forest fire smoke can lead to a wine defect known as smoke taint that is characterized by unpleasant 'smoky' and 'ashy' aromas and flavors. The intensity of smoke taint is associated with the concentration of organoleptic volatile phenols that are produced during the combustion-mediated oxidation of lignocellulosic biomass and subsequently concentrated in berries prior to fermentation. However, these same smoke-derived volatile phenols are also produced via metabolic pathways endogenous to berries. It follows then that an influx of exogenous volatile phenols (i.e., from forest fire smoke) could alter endogenous metabolism associated with volatile phenol synthesis, which occurs via the shikimic acid/phenylpropanoid pathways. The presence of ozone and karrikins in forest fire smoke, as well as changes to stomatal conductance that can occur from exposure to forest fire smoke also have the potential to influence phenylpropanoid metabolism. This study demonstrated changes in phenylpropanoid metabolites in Pinot noir berries and wine from three vineyards following the exposure of Vitis vinifera L. vines to simulated forest fire smoke. This included changes to metabolites associated with mouth feel and color in wine, both of which are important sensorial qualities to wine producers and consumers. The results reported are critical to understanding the chemical changes associated with smoke taint beyond volatile phenols, which in turn, may aid the development of preventative and remedial strategies"
Keywords:Fermentation Fruit/chemistry/metabolism Odorants/analysis Phenols/*metabolism Polyphenols/metabolism Propanols/*metabolism *Smoke Taste Vitis/chemistry/*metabolism Volatile Organic Compounds/*metabolism Wildfires Wine/analysis Phenylpropanoid Polyphenol S;
Notes:"MedlineNoestheden, Matthew Noyovitz, Benjamin Riordan-Short, Seamus Dennis, Eric G Zandberg, Wesley F eng 2016-03929/Natural Sciences and Engineering Research Council of Canada/ 509805-17/Natural Sciences and Engineering Research Council of Canada/ 35246/Canadian Foundation for Innovation/ Germany 2018/08/29 Planta. 2018 Dec; 248(6):1537-1550. doi: 10.1007/s00425-018-2994-7. Epub 2018 Aug 27"

 
Back to top
 
Citation: El-Sayed AM 2025. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2025 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 14-01-2025