Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractSocioeconomic Drivers of PM2.5 in the Accumulation Phase of Air Pollution Episodes in the Yangtze River Delta of China    Next Abstract"Unusual analyte-matrix adduct ions and mechanism of their formation in MALDI TOF MS of benzene-1,3,5-tricarboxamide and urea compounds" »

J Sep Sci


Title:Preparation and application of a coated-fiber needle extraction device
Author(s):Lou D; Chen H; Wang X; Lian L; Zhu B; Yang Q; Guo T; Li Q; Wang R; Guo X;
Address:"Department of Analytical Chemistry, Jilin Institute of Chemical Technology, Jilin, P. R. China. dwlou@hotmail.com. Department of Analytical Chemistry, Jilin Institute of Chemical Technology, Jilin, P. R. China. Department of Applied Chemistry, Jilin University, Changchun, P. R. China. Department of Organic Chemistry, Northeast Normal University, Changchun, P. R. China"
Journal Title:J Sep Sci
Year:2016
Volume:20160914
Issue:19
Page Number:3769 - 3774
DOI: 10.1002/jssc.201600410
ISSN/ISBN:1615-9314 (Electronic) 1615-9306 (Linking)
Abstract:"In this study, a needle-trap device with fibers coated with a molecularly imprinted polymer was developed for separation. A number of heat-resistant Zylon filaments were longitudinally packed into a glass capillary, followed by coating with a molecularly imprinted polymer. Then, the molecularly imprinted polymer coating was copolymerized and anchored onto the surface of the fibers. The bundle of synthetic fibers coated with the molecularly imprinted polymer was packed into a 21G stainless-steel needle and served as an extraction medium. The coated-fiber needle extraction device was used to extract volatile organic compounds from paints and gasoline effectively. Subsequently, the extracted volatile organic compounds were analyzed by gas chromatography. Calibration curves of gaseous benzene, toluene, ethylbenzene, and o-xylene in the concentration range of 1-250 mug/L were obtained to evaluate the method, acceptable linearity was attended with correlation coefficients above 0.998. The limit of detection of benzene, toluene, ethylbenzene, and o-xylene was 11-20 ng/L using the coated-fiber needle-trap device. The relative standard deviation of needle-to-needle repeatability was less than 8% with an extraction time of 20 min. The loss rates after storage for 3 and 7 days at room temperature were less than 30%"
Keywords:Coated fibers Heat-resistant fibers Molecularly imprinted polymers Needle extraction device Volatile organic compounds;
Notes:"PubMed-not-MEDLINELou, Dawei Chen, Huijun Wang, Xiyue Lian, Lili Zhu, Bo Yang, Qiaoling Guo, Tingxiu Li, Qiuying Wang, Runnan Guo, Xiaoyang eng Germany 2016/08/09 J Sep Sci. 2016 Oct; 39(19):3769-3774. doi: 10.1002/jssc.201600410. Epub 2016 Sep 14"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 27-12-2024