Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractSignificant OH production under surface cleaning and air cleaning conditions: Impact on indoor air quality    Next AbstractSteroid hormone pathways coordinate developmental diapause and olfactory remodeling in Pristionchus pacificus »

Environ Sci Process Impacts


Title:Secondary product creation potential (SPCP): a metric for assessing the potential impact of indoor air pollution on human health
Author(s):Carslaw N; Shaw D;
Address:"Department of Environment and Geography, University of York, York, UK. nicola.carslaw@york.ac.uk"
Journal Title:Environ Sci Process Impacts
Year:2019
Volume:21
Issue:8
Page Number:1313 - 1322
DOI: 10.1039/c9em00140a
ISSN/ISBN:2050-7895 (Electronic) 2050-7887 (Linking)
Abstract:"Indoor air is subject to emissions of chemicals from numerous sources. Many of these emissions contain volatile organic compounds (VOCs), which react to form a wide range of secondary products, some with adverse health effects. However, at present we lack a robust, standardised approach to rank the potential for different VOCs to cause harm, which prevents effective action to improve indoor air quality and reduce impacts on human health. This paper uses a detailed chemical model to quantify the impact of 63 VOCs on indoor air quality. We define a novel method for ranking the VOCs in terms of potentially harmful product formation through a new metric, the Secondary Product Creation Potential (SPCP). We established SPCPs for a range of ventilation rates, different proportions of transmitted outdoor light, as well as for varying outdoor concentrations of ozone and nitrogen oxides. The species having the largest SPCPs are the alkenes, terpenes and aromatic VOCs. trans-2-Butene has the largest individual SPCP owing to the ratio of its rate coefficient for reaction with the hydroxy radical relative to ozone. Increasing the proportion of outdoor transmitted light increased most SPCPs markedly. This is because oxidant levels increased under these conditions and promoted more chemical processing, suggesting that there may be more harmful products closer to a window than further from the attenuated outdoor light. The SPCP is the first metric for assessing the impact of different VOCs on human health and will be an essential tool for guiding the composition of products commonly used indoors"
Keywords:"Air Pollutants/*analysis Air Pollution, Indoor/*analysis Humans Nitrogen Oxides/analysis Ozone/analysis Risk Assessment Volatile Organic Compounds/*analysis;"
Notes:"MedlineCarslaw, Nicola Shaw, David eng England 2019/05/30 Environ Sci Process Impacts. 2019 Aug 14; 21(8):1313-1322. doi: 10.1039/c9em00140a"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 27-12-2024