Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractRapid leaf development drives the seasonal pattern of volatile organic compound (VOC) fluxes in a 'coppiced' bioenergy poplar plantation    Next AbstractSilverfish (Zygentoma) in Austrian Museums before and during COVID-19 lockdown »

Int J Mol Sci


Title:"Root Exposure to 5-Aminolevulinic Acid (ALA) Affects Leaf Element Accumulation, Isoprene Emission, Phytohormonal Balance, and Photosynthesis of Salt-Stressed Arundo donax"
Author(s):Brilli F; Pignattelli S; Baraldi R; Neri L; Pollastri S; Gonnelli C; Giovannelli A; Loreto F; Cocozza C;
Address:"Institute for Sustainable Plant Protectio, National Research Council of Italy (IPSP-CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy. Institute of Biosciences and BioResources, National Research Council of Italy (IBBR-CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy. Institute for BioEconomy, National Research Council of Italy (IBE-CNR), Via Gobetti 101, 40129 Bologna, Italy. Department of Biology, University of Florence, Via Micheli 1, 50121 Firenze, Italy. Research Institute on Terrestrial Ecosystems, National Research Council of Italy (IRET-CNR), Via Madonna del Piano 10, 5001 Sesto Fiorentino, Italy. Department of Biology, University of Naples 'Federico II', Via Cinthia 7, 80126 Napoli, Italy. Department of Agriculture Food Environment and Forestry, University of Florence, Via San Bon-Aventura 13, 50145 Firenze, Italy"
Journal Title:Int J Mol Sci
Year:2022
Volume:20220413
Issue:8
Page Number: -
DOI: 10.3390/ijms23084311
ISSN/ISBN:1422-0067 (Electronic) 1422-0067 (Linking)
Abstract:"Arundo donax has been recognized as a promising crop for biomass production on marginal lands due to its superior productivity and stress tolerance. However, salt stress negatively impacts A. donax growth and photosynthesis. In this study, we tested whether the tolerance of A. donax to salinity stress can be enhanced by the addition of 5-aminolevulinic acid (ALA), a known promoter of plant growth and abiotic stress tolerance. Our results indicated that root exposure to ALA increased the ALA levels in leaves along the A. donax plant profile. ALA enhanced Na(+) accumulation in the roots of salt-stressed plants and, at the same time, lowered Na(+) concentration in leaves, while a reduced callose amount was found in the root tissue. ALA also improved the photosynthetic performance of salt-stressed apical leaves by stimulating stomatal opening and preventing an increase in the ratio between abscisic acid (ABA) and indol-3-acetic acid (IAA), without affecting leaf methanol emission and plant growth. Supply of ALA to the roots reduced isoprene fluxes from leaves of non-stressed plants, while it sustained isoprene fluxes along the profile of salt-stressed A. donax. Thus, ALA likely interacted with the methylerythritol 4-phosphate (MEP) pathway and modulate the synthesis of either ABA or isoprene under stressful conditions. Overall, our study highlights the effectiveness of ALA supply through soil fertirrigation in preserving the young apical developing leaves from the detrimental effects of salt stress, thus helping of A. donax to cope with salinity and favoring the recovery of the whole plant once the stress is removed"
Keywords:Abscisic Acid/metabolism *Aminolevulinic Acid/metabolism Butadienes Hemiterpenes Photosynthesis *Plant Growth Regulators Plant Leaves/metabolism Plant Roots/metabolism Poaceae/metabolism Salt Stress abscisic acid (ABA) growth indol-3-acetic acid (IAA) sod;
Notes:"MedlineBrilli, Federico Pignattelli, Sara Baraldi, Rita Neri, Luisa Pollastri, Susanna Gonnelli, Cristina Giovannelli, Alessio Loreto, Francesco Cocozza, Claudia eng SIR 2014 - RBSI14VV35/Italian Ministry of University (MUR)/ Switzerland 2022/04/24 Int J Mol Sci. 2022 Apr 13; 23(8):4311. doi: 10.3390/ijms23084311"

 
Back to top
 
Citation: El-Sayed AM 2025. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2025 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 01-01-2025