Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractCharacterization of Mining-Related Aromatic Contaminants in Active and Abandoned Metal(loid) Tailings Ponds    Next AbstractComparison between idling and cruising gasoline vehicles in primary emissions and secondary organic aerosol formation during photochemical ageing »

J Exp Bot


Title:Combined transcriptome and metabolome analysis identifies defence responses in spider mite-infested pepper (Capsicum annuum)
Author(s):Zhang Y; Bouwmeester HJ; Kappers IF;
Address:"Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University and Research, Wageningen, The Netherlands. Plant Hormone Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park, Amsterdam, The Netherlands. Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University and Research, Droevendaalsesteeg, Wageningen, The Netherlands"
Journal Title:J Exp Bot
Year:2020
Volume:71
Issue:1
Page Number:330 - 343
DOI: 10.1093/jxb/erz422
ISSN/ISBN:1460-2431 (Electronic) 0022-0957 (Print) 0022-0957 (Linking)
Abstract:"Plants regulate responses towards herbivory through fine-tuning of defence-related hormone production, expression of defence genes, and production of secondary metabolites. Jasmonic acid (JA) plays a key role in plant-herbivorous arthropod interactions. To understand how pepper (Capsicum annuum) responds to herbivory, leaf transcriptomes and metabolomes of two genotypes different in their susceptibility to spider mites were studied. Mites induced both JA and salicylic acid (SA) signalling. However, mite infestation and exogenous JA resulted in distinct transcriptome profiles. Compared with JA, mites induced fewer differentially expressed genes involved in metabolic processes (except for genes involved in the phenylpropanoid pathway) and lipid metabolic processes. Furthermore, pathogen-related defence responses including WRKY transcription factors were more strongly induced upon mite infestation, probably as a result of induced SA signalling. Untargeted analysis of secondary metabolites confirmed that JA treatment induced larger changes in metabolism than spider mite infestation, resulting in higher terpenoid and flavonoid production. The more resistant genotype exhibited a larger increase in endogenous JA and volatile and non-volatile secondary metabolites upon infestation, which could explain its stronger defence. Reasoning that in JA-SA antagonizing crosstalk, SA defences are prioritized over JA defences, we hypothesize that lack of SA-mediated repression of JA-induced defences could result in gain of resistance towards spider mites in pepper"
Keywords:Animals Capsicum/genetics/*physiology *Herbivory *Metabolome Tetranychidae/*physiology *Transcriptome Capsicum annuum JA/SA crosstalk plant-arthropod interactions specialized metabolites transcriptional changes two-spotted spider mites;
Notes:"MedlineZhang, Yuanyuan Bouwmeester, Harro J Kappers, Iris F eng Research Support, Non-U.S. Gov't England 2019/09/27 J Exp Bot. 2020 Jan 1; 71(1):330-343. doi: 10.1093/jxb/erz422"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 27-12-2024