Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractBelt-Mounted Micro-Gas-Chromatograph Prototype for Determining Personal Exposures to Volatile-Organic-Compound Mixture Components    Next AbstractAn electromagnetic anglerfish-shaped millirobot with wireless power generation »

Gene


Title:Characterization and expression profiling of odorant-binding proteins in Anoplophora glabripennis Motsch
Author(s):Wang J; Gao P; Luo Y; Tao J;
Address:"Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, 100083, PR China. Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, 100083, PR China. Electronic address: gaopeng19900123@bjfu.edu.cn. Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, 100083, PR China. Electronic address: youqingluo@126.com. Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, 100083, PR China. Electronic address: taojing1029@hotmail.com"
Journal Title:Gene
Year:2019
Volume:20190126
Issue:
Page Number:25 - 36
DOI: 10.1016/j.gene.2018.12.075
ISSN/ISBN:1879-0038 (Electronic) 0378-1119 (Linking)
Abstract:"In insects, olfaction plays a critical role in locating hosts, recognizing mates, and selecting oviposition sites. The Asian long-horned beetle (Anoplophora glabripennis Motschulsky) feeds on 43 species of trees in 15 families, but its chemosensory mechanisms are poorly understood. Herein, genes encoding 61 odorant-binding proteins (OBPs) were identified from the published genome and our previous A. glabripennis transcriptomic data. To investigate their physiological functions, we performed expression profiling of all AglaOBPs in the antennae, legs, and maxillary palps of both sexes. Phylogenetic analysis clustered A. glabripennis OBPs into four subgroups, comprising 29 Minus-C OBPs, 15 Antennae-binding proteins (ABPIIs), 10 Classic OBPs, and one Plus-C OBP. 12 AglaOBP genes were expressed specifically in antennae, and AglaOBP3, AglaOBP18, AglaOBP21, AglaOBP33, AglaOBP41, AglaOBP45, and AglaOBP47 were particularly highly expressed in male antennae. These proteins may function in the detection of female sex pheromones. AglaOBP23 and AglaOBP44 were preferentially expressed in maxillary palps. Expression profiling suggests that many OBPs may be involved in olfaction and gustation, in addition to carrying hydrophobic molecules. The AglaOBPs family has acquired functional diversity concurrently with functional constraints, and further investigation could provide insight into the roles of OBPs in chemoreception"
Keywords:"Amino Acid Sequence Animals Coleoptera/*genetics/metabolism Female Gene Expression Profiling/methods Insect Proteins/genetics Male Phylogeny Receptors, Odorant/*genetics/*metabolism Sequence Alignment Transcriptome Asian long-horned beetle Chemoreception;"
Notes:"MedlineWang, Jingzhen Gao, Peng Luo, Youqing Tao, Jing eng Netherlands 2019/01/30 Gene. 2019 Apr 20; 693:25-36. doi: 10.1016/j.gene.2018.12.075. Epub 2019 Jan 26"

 
Back to top
 
Citation: El-Sayed AM 2025. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2025 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 16-01-2025