Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractDesign and performance of subgrade biogeochemical reactors    Next Abstract"DNM1, a dynamin-related gene, participates in endosomal trafficking in yeast" »

Biol Trace Elem Res


Title:Estimating intestinal absorption of inorganic and organic selenium compounds by in vitro flux and biotransformation studies in Caco-2 cells and ICP-MS detection
Author(s):Gammelgaard B; Rasmussen LH; Gabel-Jensen C; Steffansen B;
Address:"Department of Pharmaceutics and Analytical Chemistry, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark. bg@farma.ku.dk"
Journal Title:Biol Trace Elem Res
Year:2012
Volume:20110824
Issue:2
Page Number:248 - 256
DOI: 10.1007/s12011-011-9174-y
ISSN/ISBN:1559-0720 (Electronic) 0163-4984 (Linking)
Abstract:"The aim of the present work was to compare and estimate absorption and biotransformation of selected selenium compounds by studying their fluxes across Caco-2 cells. Five different selenium compounds, selenomethionine (SeMet), Se-methylselenocysteine (MeSeCys), selenate, selenite, and methylseleninic acid (MeSeA), were applied to Caco-2 cells in a concentration of 10 muM, and fluxes in both directions were studied for 2 h. Fluxes of selenite and MeSeA in the presence of excess reduced glutathione (selenite + GSH and MeSeA + GSH) and flux of MeSeA in the presence of excess cysteine (MeSeA + Cys) were also studied. Selenium absorptive and exsorptive fluxes and accumulation in cell cytosol were analyzed by means of flow injection inductively coupled plasma mass spectrometry (ICP-MS). Absorptive flux of SeMet, MeSeCys, and selenate showed values correlating to complete in vivo absorption, while selenite and MeSeA fluxes correlated to poor in vivo absorption. Speciation analysis of cell lysate and donor and receptor solutions by LC-ICP-MS showed limited transformation of all selenium compounds. Extensive transformation as well as significantly increased absorptive flux was observed when co-administering selenite with glutathione compared to administering selenite alone. These observations are possibly due to formation of selenodiglutathione (GS-Se-SG) which may be absorbed differently than selenite. Concomitant application of GSH or cysteine with MeSeA resulted in extensive transformation of MeSeA, including volatile species, whereas no significant increases in fluxes were observed. In summary, the absorption of selenite selenate and the selenoamino acids is considered complete under physiological conditions, but the absorption mechanisms and metabolism of the compounds are different"
Keywords:"Caco-2 Cells Humans Intestinal Absorption/drug effects/*physiology Mass Spectrometry/methods *Models, Biological Organoselenium Compounds/*metabolism/pharmacology Selenium Compounds/*metabolism/pharmacology;"
Notes:"MedlineGammelgaard, Bente Rasmussen, Laura Hyrup Gabel-Jensen, Charlotte Steffansen, Bente eng Research Support, Non-U.S. Gov't 2011/08/25 Biol Trace Elem Res. 2012 Feb; 145(2):248-56. doi: 10.1007/s12011-011-9174-y. Epub 2011 Aug 24"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 03-07-2024