Title: | Male-derived butterfly anti-aphrodisiac mediates induced indirect plant defense |
Author(s): | Fatouros NE; Broekgaarden C; Bukovinszkine'Kiss G; van Loon JJ; Mumm R; Huigens ME; Dicke M; Hilker M; |
Address: | "Department of Plant Sciences, Laboratory of Entomology, Wageningen University, PO Box 8031, 6700 EH Wageningen, The Netherlands. nina.fatouros@wur.nl" |
ISSN/ISBN: | 1091-6490 (Electronic) 0027-8424 (Print) 0027-8424 (Linking) |
Abstract: | "Plants can recruit parasitic wasps in response to egg deposition by herbivorous insects-a sophisticated indirect plant defense mechanism. Oviposition by the Large Cabbage White butterfly Pieris brassicae on Brussels sprout plants induces phytochemical changes that arrest the egg parasitoid Trichogramma brassicae. Here, we report the identification of an elicitor of such an oviposition-induced plant response. Eliciting activity was present in accessory gland secretions released by mated female butterflies during egg deposition. In contrast, gland secretions from virgin female butterflies were inactive. In the male ejaculate, P. brassicae females receive the anti-aphrodisiac benzyl cyanide (BC) that reduces the females' attractiveness for subsequent mating. We detected this pheromone in the accessory gland secretion released by mated female butterflies. When applied onto leaves, BC alone induced phytochemical changes that arrested females of the egg parasitoid. Microarray analyses revealed a similarity in induced plant responses that may explain the arrest of T. brassicae to egg-laden and BC-treated plants. Thus, a male-derived compound endangers the offspring of the butterfly by inducing plant defense. Recently, BC was shown to play a role in foraging behavior of T. brassicae, by acting as a cue to facilitate phoretic transport by mated female butterflies to oviposition sites. Our results suggest that the anti-aphrodisiac pheromone incurs fitness costs for the butterfly by both mediating phoretic behavior and inducing plant defense" |
Keywords: | "Animals Aphrodisiacs/antagonists & inhibitors Brassica/*parasitology/physiology Butterflies/*pathogenicity/physiology Female Genitalia, Male/physiology Host-Parasite Interactions/*physiology Male Oviposition Ovum/parasitology Plant Diseases/parasitology P;" |
Notes: | "MedlineFatouros, Nina E Broekgaarden, Colette Bukovinszkine'Kiss, Gabriella van Loon, Joop J A Mumm, Roland Huigens, Martinus E Dicke, Marcel Hilker, Monika eng Research Support, Non-U.S. Gov't 2008/07/16 Proc Natl Acad Sci U S A. 2008 Jul 22; 105(29):10033-8. doi: 10.1073/pnas.0707809105. Epub 2008 Jul 14" |