Title: | Identification of geographical origin of Keemun black tea based on its volatile composition coupled with multivariate statistical analyses |
Author(s): | Fang S; Ning J; Huang WJ; Zhang G; Deng WW; Zhang Z; |
Address: | "State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China. School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China" |
ISSN/ISBN: | 1097-0010 (Electronic) 0022-5142 (Linking) |
Abstract: | "BACKGROUND: Keemun black tea (KBT) is one of the most popular tea beverages in China as a result of its unique flavor and potential health benefits. The geographical origin of KBT influences its quality and price. The present study aimed to apply a head-space solid phase microextraction approach and gas chromatography-mass spectrometry combined with chemometric analysis to profile the volatile compounds of KBT collected from five production areas. RESULTS: Thirty-one peaks were detected in 61 KBT samples. Hierarchical cluster analysis, principal component analysis (PCA), k-nearest neighbor (k-NN) and stepwise linear discriminant analysis (SLDA) were employed to visualize the volatile fractions. The results of unsupervised statistical tools were compared using a test for similarities and distinctions, which showed that different sources may be associated. A satisfying combination of average recognition (91.7%) and cross-validation prediction abilities (84.6%) was obtained for the PCA-k-NN. Among all of the statistical tools, SLDA provided promising results, with 100% recognition and 96.4% prediction ability. CONCLUSION: The results obtained in the present study indicate that the volatile compounds can be used as indicators to identify the geographical origin of KBT. (c) 2019 Society of Chemical Industry" |
Keywords: | Camellia sinensis/*chemistry China Discriminant Analysis Gas Chromatography-Mass Spectrometry Geography Multivariate Analysis Principal Component Analysis Solid Phase Microextraction Tea/*chemistry Volatile Organic Compounds/*chemistry/isolation & purific; |
Notes: | "MedlineFang, Shimao Ning, Jingming Huang, Wen-Jing Zhang, Gang Deng, Wei-Wei Zhang, Zhengzhu eng CARS-19/Modern Agriculture (tea) Special System of China/ 2016YFD0200900/National Key Research & Development Plan/ England 2019/03/05 J Sci Food Agric. 2019 Jul; 99(9):4344-4352. doi: 10.1002/jsfa.9668. Epub 2019 Apr 9" |