Title: | "Biosynthesis, function and metabolic engineering of plant volatile organic compounds" |
Author(s): | Dudareva N; Klempien A; Muhlemann JK; Kaplan I; |
Address: | "Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA. Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA. Department of Entomology, Purdue University, West Lafayette, IN, 47907, USA" |
ISSN/ISBN: | 1469-8137 (Electronic) 0028-646X (Linking) |
Abstract: | "Plants synthesize an amazing diversity of volatile organic compounds (VOCs) that facilitate interactions with their environment, from attracting pollinators and seed dispersers to protecting themselves from pathogens, parasites and herbivores. Recent progress in -omics technologies resulted in the isolation of genes encoding enzymes responsible for the biosynthesis of many volatiles and contributed to our understanding of regulatory mechanisms involved in VOC formation. In this review, we largely focus on the biosynthesis and regulation of plant volatiles, the involvement of floral volatiles in plant reproduction as well as their contribution to plant biodiversity and applications in agriculture via crop-pollinator interactions. In addition, metabolic engineering approaches for both the improvement of plant defense and pollinator attraction are discussed in light of methodological constraints and ecological complications that limit the transition of crops with modified volatile profiles from research laboratories to real-world implementation" |
Keywords: | Fatty Acids/biosynthesis *Metabolic Engineering Plants/*metabolism Volatile Organic Compounds/chemistry/*metabolism Volatilization; |
Notes: | "MedlineDudareva, Natalia Klempien, Antje Muhlemann, Joelle K Kaplan, Ian eng Research Support, U.S. Gov't, Non-P.H.S. Review England 2013/02/07 New Phytol. 2013 Apr; 198(1):16-32. doi: 10.1111/nph.12145. Epub 2013 Feb 6" |