Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractSilicone wristbands integrate dermal and inhalation exposures to semi-volatile organic compounds (SVOCs)    Next AbstractRecent progress in food flavor analysis using gas chromatography-ion mobility spectrometry (GC-IMS) »

ACS Appl Mater Interfaces


Title:Three-Dimensional-Printed Core-Shell Structured MFI-Type Zeolite Monoliths for Volatile Organic Compound Capture under Humid Conditions
Author(s):Wang S; Bai P; Wei Y; Liu W; Ren X; Bai J; Lu Z; Yan W; Yu J;
Address:"School of Mechanical and Aerospace Engineering , Jilin University , Changchun 130025 , China"
Journal Title:ACS Appl Mater Interfaces
Year:2019
Volume:20191009
Issue:42
Page Number:38955 - 38963
DOI: 10.1021/acsami.9b13819
ISSN/ISBN:1944-8252 (Electronic) 1944-8244 (Linking)
Abstract:"Crystalline aluminosilicate zeolites with high sorption capacity and low production cost have been recognized as a promising adsorbent for volatile organic compound (VOC) capture. However, the ubiquitous water vapor in the VOC streams may compete with VOCs during the practical separation process because of the hydrophilic property of aluminosilicate zeolites. Herein, a self-supporting core-shell structured MFI-type zeolite monolith was fabricated by 3D-printing aluminosilicate ZSM-5 zeolites as the core, followed by coating silicalite-1 zeolites as a hydrophobic shell via post-hydrothermal crystallization. Natural sepiolite nanofibers (SNFs) were employed as printing ink additives for reinforcing the mechanical stability of 3D-printed ZSM-5 monoliths. Colloidal silica was also introduced into the printing inks, affording continuous growth of silicalite-1 layers (with a thickness of approximately 200 nm) over ZSM-5 crystals. Such core-shell structured MFI-type zeolite monoliths exhibited superior dynamic adsorption performance for toluene at 298 K under humid conditions (relative humidity: 50%), with a saturated adsorption capacity of 44.3 mg/g. This work provides a facile strategy for designing self-supporting zeolite monoliths with core-shell architectures for adsorption/separation and other advanced applications"
Keywords:3D printing VOC capture core-shell structure honeycomb monoliths zeolites;
Notes:"PubMed-not-MEDLINEWang, Shuang Bai, Pu Wei, Yingzhen Liu, Wei Ren, Xiaoyu Bai, Junli Lu, Zhiming Yan, Wenfu Yu, Jihong eng 2019/09/24 ACS Appl Mater Interfaces. 2019 Oct 23; 11(42):38955-38963. doi: 10.1021/acsami.9b13819. Epub 2019 Oct 9"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 05-12-2024