Title: | Reduction of nitrous oxide emissions from biological nutrient removal processes by thermal decomposition |
Author(s): | Pedros PB; Askari O; Metghalchi H; |
Address: | "AECOM, 5000 Overlook Ave., Washington DC, USA. Electronic address: Philip.Pedros@aecom.com. Mississippi State University, MS, USA. Electronic address: askari@me.msstate.edu. Northeastern University, 360 Huntington Ave., Boston, MA, USA. Electronic address: metghalchi@coe.neu.edu" |
DOI: | 10.1016/j.watres.2016.10.007 |
ISSN/ISBN: | 1879-2448 (Electronic) 0043-1354 (Linking) |
Abstract: | "During the last decade municipal wastewater treatment plants have been regulated with increasingly stringent nutrient removal requirements including nitrogen. Typically biological treatment processes are employed to meet these limits. Although the nitrogen in the wastewater stream is reduced, certain steps in the biological processes allow for the release of gaseous nitrous oxide (N(2)O), a greenhouse gas (GHG). A comprehensive study was conducted to investigate the potential to mitigate N(2)O emissions from biological nutrient removal (BNR) processes by means of thermal decomposition. The study examined using the off gases from the biological process, instead of ambient air, as the oxidant gas for the combustion of biomethane. A detailed analysis was done to examine the concentration of N(2)O and 58 other gases that exited the combustion process. The analysis was based on the assumption that the exhaust gases were in chemical equilibrium since the residence time in the combustor is sufficiently longer than the chemical characteristics. For all inlet N(2)O concentrations the outlet concentrations were close to zero. Additionally, the emission of hydrogen sulfide (H(2)S) and ten commonly occurring volatile organic compounds (VOCs) were also examined as a means of odor control for biological secondary treatment processes or as potential emissions from an anaerobic reactor of a BNR process. The sulfur released from the H(2)S formed sulfur dioxide (SO(2)) and eight of the ten VOCs were destroyed" |
Keywords: | Gases Nitrogen *Nitrous Oxide *Wastewater BNR processes Green house gases Nitrous oxide emissions Thermal decomposition; |
Notes: | "MedlinePedros, Philip B Askari, Omid Metghalchi, Hameed eng England 2016/10/12 Water Res. 2016 Dec 1; 106:304-311. doi: 10.1016/j.watres.2016.10.007. Epub 2016 Oct 4" |