Title: | Promoted wet peroxide oxidation of chlorinated volatile organic compounds catalyzed by FeOCl supported on macro-microporous biomass-derived activated carbon |
Author(s): | Pan C; Wang W; Fu C; Chol Nam J; Wu F; You Z; Xu J; Li J; |
Address: | "School of Resource and Environmental Sciences, Hubei Key Lab of Bioresource and Environmental Biotechnology, Wuhan University, Wuhan 430079, China. State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, Hubei, 430072, P.R. China. Electronic address: jingxu0506@whu.edu.cn. School of Resource and Environmental Sciences, Hubei Key Lab of Bioresource and Environmental Biotechnology, Wuhan University, Wuhan 430079, China. Electronic address: lijinjun@whu.edu.cn" |
DOI: | 10.1016/j.jcis.2023.05.004 |
ISSN/ISBN: | 1095-7103 (Electronic) 0021-9797 (Linking) |
Abstract: | "Chlorinated volatile organic compounds (CVOCs) are a recalcitrant class of air pollutants, and the strongly oxidizing reactive oxygen species (ROS) generated in advanced oxidation processes (AOPs) are promising to degrade them. In this study, a FeOCl-loaded biomass-derived activated carbon (BAC) has been used as an adsorbent for accumulating CVOCs and catalyst for activating H(2)O(2) to construct a wet scrubber for the removal of airborne CVOCs. In addition to well-developed micropores, the BAC has macropores mimicking those of biostructures, which allows CVOCs to diffuse easily to its adsorption sites and catalytic sites. Probe experiments have revealed HO(*) to be the dominant ROS in the FeOCl/BAC + H(2)O(2) system. The wet scrubber performs well at pH 3 and H(2)O(2) concentrations as low as a few mM. It is capable of removing over 90% of dichloroethane, trichloroethylene, dichloromethane and chlorobenzene from air. By applying pulsed dosing or continuous dosing to replenish H(2)O(2) to maintain its appropriate concentration, the system achieves good long-term efficiency. A dichloroethane degradation pathway is proposed based on the analysis of intermediates. This work may provide inspiration for the design of catalyst exploiting the inherent structure of biomass for catalytic wet oxidation of CVOCs or other contaminants" |
Keywords: | AOPs Biocarbon CVOCs Catalytic wet peroxide oxidation FeOCl Wet scrubber; |
Notes: | "PubMed-not-MEDLINEPan, Cong Wang, Wenyu Fu, Chenchong Chol Nam, Jong Wu, Feng You, Zhixiong Xu, Jing Li, Jinjun eng 2023/05/19 J Colloid Interface Sci. 2023 Sep 15; 646:320-330. doi: 10.1016/j.jcis.2023.05.004. Epub 2023 May 8" |