Title: | Semiconductor Gas Sensor for Triethylamine Detection |
Author(s): | Liu J; Zhang L; Fan J; Yu J; |
Address: | "State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China. School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China. Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan, 430074, P. R. China" |
ISSN/ISBN: | 1613-6829 (Electronic) 1613-6810 (Linking) |
Abstract: | "With the demanding detection of unique toxic gas, semiconductor gas sensors have attracted tremendous attention due to their intriguing features, such as, high sensitivity, online detection, portability, ease of use, and low cost. Triethylamine, a typical gas of volatile organic compounds, is an important raw material for industrial development, but it is also a hazard to human health. This review presents a concise compilation of the advances in triethylamine detection based on chemiresistive sensors. Specifically, the testing system and sensing parameters are described in detail. Besides, the sensing mechanism with characterizing tactics is analyzed. The research status based on various chemiresistive sensors is also surveyed. Finally, the conclusion and challenges, as well as some perspectives toward this area, are presented" |
Keywords: | *Ethylamines Humans Semiconductors *Volatile Organic Compounds In 2O 3 Schottky junctions ZnO chemiresistive sensors n-n heterojunctions; |
Notes: | "MedlineLiu, Jingjing Zhang, Liuyang Fan, Jiajie Yu, Jiaguo eng Research Support, Non-U.S. Gov't Review Germany 2021/12/12 Small. 2022 Mar; 18(11):e2104984. doi: 10.1002/smll.202104984. Epub 2021 Dec 10" |