Title: | Will climate change affect insect pheromonal communication? |
Author(s): | Boullis A; Detrain C; Francis F; Verheggen FJ; |
Address: | "Entomologie Fonctionnelle et Evolutive, Gembloux Agro-Bio Tech, Universite de Liege, 2 Passage des Deportes, 5030 Gembloux, Belgium. Service d'Ecologie Sociale, Universite libre de Bruxelles, Campus de la Plaine, Boulevard du Triomphe, 1050 Brussels, Belgium. Entomologie Fonctionnelle et Evolutive, Gembloux Agro-Bio Tech, Universite de Liege, 2 Passage des Deportes, 5030 Gembloux, Belgium. Electronic address: fverheggen@ulg.ac.be" |
DOI: | 10.1016/j.cois.2016.08.006 |
Abstract: | "Understanding how climate change will affect species interactions is a challenge for all branches of ecology. We have only limited understanding of how increasing temperature and atmospheric CO(2) and O(3) levels will affect pheromone-mediated communication among insects. Based on the existing literature, we suggest that the entire process of pheromonal communication, from production to behavioural response, is likely to be impacted by increases in temperature and modifications to atmospheric CO(2) and O(3) levels. We argue that insect species relying on long-range chemical signals will be most impacted, because these signals will likely suffer from longer exposure to oxidative gases during dispersal. We provide future directions for research programmes investigating the consequences of climate change on insect pheromonal communication" |
Keywords: | Animal Communication Animals *Climate Change Ecosystem Insecta/*physiology Pheromones/*physiology; |
Notes: | "MedlineBoullis, Antoine Detrain, Claire Francis, Frederic Verheggen, Francois J eng Research Support, Non-U.S. Gov't Review Netherlands 2016/10/11 Curr Opin Insect Sci. 2016 Oct; 17:87-91. doi: 10.1016/j.cois.2016.08.006. Epub 2016 Aug 21" |