Title: | Leaching behaviour of bisphenol A from municipal solid waste under landfill environment |
Author(s): | Xu SY; Zhang H; He PJ; Shao LM; |
Address: | "State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai, PR China" |
DOI: | 10.1080/09593330.2010.535175 |
ISSN/ISBN: | 0959-3330 (Print) 0959-3330 (Linking) |
Abstract: | "With a preliminary insight into the source and leaching behaviour ofbisphenol A (BPA) from municipal solid wastes (MSW), five kinds of plastic and four kinds of paper materials were leached by distilled water. Polyvinyl chloride (PVC) waste was found to have the highest BPA content of 12.1 microg x g(-1) and leachability of 34.7% in distilled water, while cardboard with relatively low BPA content also showed a high ratio of leaching (53.6%). Fresh leachate and leachates from a landfill of age 1.5 and 10 years were adopted as leachants for the PVC plastic and cardboard to simulate the leaching behaviour of BPA under a landfill environment. The enhancement of BPA leachability in the 10-year leachate compared with distilled water was higher than that in the other two leachates due to its basic pH and high content of humic organic matters. Meanwhile, the enhancement of BPA leachability by the fresh leachate was higher than that by the 1.5-year leachate, possibly due to the presence of small molecules such as volatile fatty acids, amino acids, etc. The paper waste was not only a minor origin of BPA leaching, but also a controlling factor in retarding BPA transformation. The BPA sorption K(f) value of the cardboard in the Freundlich equation was 0.2224 mg(1-n)) x L(n) x g(-1) (n = 0.7680), higher than that obtained in sorption experiments by natural organic adsorbents such as sediment. It suggested that the presence of paper with a high sorption capacity in MSW will restrain BPA transport and bioavailability in landfills" |
Keywords: | "Adsorption Benzhydryl Compounds *Garbage Hydrogen-Ion Concentration Paper Phenols/analysis/*chemistry Plastics/chemistry Polyvinyl Chloride/chemistry Time Factors Water/chemistry Water Pollutants, Chemical/*chemistry;" |
Notes: | "MedlineXu, Su-Yun Zhang, Hua He, Pin-Jing Shao, Li-Ming eng Research Support, Non-U.S. Gov't England 2011/10/06 Environ Technol. 2011 Aug-Sep; 32(11-12):1269-77. doi: 10.1080/09593330.2010.535175" |