Title: | "Kinetics and simulations of substrate interactions during the biodegradation of benzene, toluene, p-xylene and styrene" |
Author(s): | Song J; Shin S; Jang HS; Hwang SJ; |
Address: | "Department of Civil and Environmental Engineering, Sejong University, Seoul, Republic of Korea" |
Journal Title: | J Environ Sci Health A Tox Hazard Subst Environ Eng |
DOI: | 10.1080/10934529.2012.667320 |
ISSN/ISBN: | 1532-4117 (Electronic) 1093-4529 (Linking) |
Abstract: | "Air streams commonly emitted from industrial sources generally contain various mixtures of volatile organic compounds (VOCs), and these complex mixtures can present challenges with respect to bioreactor design and applications. In this study, therefore, a modified Monod-type model using interaction parameters was employed to describe the biodegradation kinetics of mixtures of aromatic compounds by a Pseudomonas isolate. In addition, the model and estimated parameters were utilized to predict the performance of a bubble-column bioreactor for the treatment of mixtures of benzene, toluene, p-xylene, and styrene (BTXS). Benzene, toluene and styrene, as individual substrates, were actively degraded by the bacterial culture, whereas p-xylene was not degraded as a single substrate. Relative to the single substrate experiments, the degradation of benzene and toluene was inhibited by the other compounds, while the degradation of styrene was significantly stimulated in the presence of the other BTXS compounds. The cometabolic degradation of p-xylene was observed in the presence of benzene and toluene. The estimated interaction parameters indicated that the degradation of benzene was substantially inhibited in the presence of styrene, whereas the degradation of styrene was strongly stimulated by toluene. The kinetic coefficients and interaction parameters were used to successfully predict the biodegradation kinetics and performance of a bioreactor subjected to the quaternary mixture. Overall, the model was able to provide reasonable predictions when substrate interactions, including inhibition, stimulation, and cometabolism, play significant roles in biodegradation processes" |
Keywords: | "Air Pollutants/*metabolism Benzene/*metabolism Benzene Derivatives/*metabolism Biodegradation, Environmental *Bioreactors Computer Simulation *Filtration Kinetics Models, Biological Pseudomonas/*metabolism;" |
Notes: | "MedlineSong, Jihyeon Shin, Seungkyu Jang, Hyun-Sup Hwang, Sun-Jin eng Research Support, Non-U.S. Gov't England 2012/04/11 J Environ Sci Health A Tox Hazard Subst Environ Eng. 2012; 47(7):1027-35. doi: 10.1080/10934529.2012.667320" |