Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous Abstract"An endophyte of Picrorhiza kurroa Royle ex. Benth, producing menthol, phenylethyl alcohol and 3-hydroxypropionic acid, and other volatile organic compounds"    Next AbstractAntibacterial activity in vitro of Thymus capitatus from Jordan »

Microb Ecol


Title:An Insight into the Secondary Metabolism of Muscodor yucatanensis: Small-Molecule Epigenetic Modifiers Induce Expression of Secondary Metabolism-Related Genes and Production of New Metabolites in the Endophyte
Author(s):Qadri M; Nalli Y; Jain SK; Chaubey A; Ali A; Strobel GA; Vishwakarma RA; Riyaz-Ul-Hassan S;
Address:"Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, 180001, India. Natural Product Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, 180001, India. Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, 180001, India. Fermentation Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, 180001, India. Department of Plant Sciences, Montana State University, Bozeman, MT, 59717, USA. Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, 180001, India. srhassan@iiim.ac.in. Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, 180001, India. srhassan@iiim.ac.in"
Journal Title:Microb Ecol
Year:2017
Volume:20161206
Issue:4
Page Number:954 - 965
DOI: 10.1007/s00248-016-0901-y
ISSN/ISBN:1432-184X (Electronic) 0095-3628 (Linking)
Abstract:"Muscodor spp. are proficient producers of bioactive volatile organic compounds (VOCs) with many potential applications. However, all members of this genus produce varying amounts and types of VOCs which suggests the involvement of epigenetics as a possible explanation. The members of this genus are poorly explored for the production of soluble compounds (extrolites). In this study, the polyketide synthase (PKS) and non-ribosomal peptide synthetase (NRPS) genes from an endophyte, Muscodor yucatanensis Ni30, were cloned and sequenced. The PKS genes belonged to reduced, partially reduced, non-reduced, and highly reduced subtypes. Strains over-expressing PKS genes were developed through the use of small-molecule epigenetic modifiers (suberoylanilide hydroxamic acid (SAHA) and 5-azacytidine). The putative epigenetic variants of this organism differed considerably from the wild type in morphological features and cultural characteristics as well as metabolites that were produced. Each variant produced a different set of VOCs distinct from the wild type, and several VOCs including methyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl)hexane-2,4-diol and 2-carboxymethyl-3-n-hexylmaleic appeared in the variant strains, the production of which could be attributed to the activity of otherwise silent PKS genes. The bioactive extrolite brefeldin A was isolated and characterized from the wild type. However, this metabolite was not detected in EV-1, but instead, two other products were isolated and characterized as ergosterol and xylaguaianol C. Hence, M. yucatanensis has the genetic potential to produce several previously undetectable VOCs and organic solvent soluble products. It is also the case that small-molecule epigenetic modifiers can be used to produce stable variant strains of fungi with the potential to produce new molecules. Finally, this work hints to the prospect that the epigenetics of an endophytic microorganism can be influenced by any number of environmental and chemical factors associated with its host plant which may help to explain the enormous chemical diversity of secondary metabolic products found in Muscodor spp"
Keywords:"Amino Acid Sequence Azacitidine/metabolism Brefeldin A/metabolism DNA, Fungal Endophytes/*enzymology/*genetics/metabolism *Epigenomics Ergosterol/metabolism Gene Expression Regulation, Fungal/*genetics Genes, Fungal Hydroxamic Acids/metabolism Peptide Syn;"
Notes:"MedlineQadri, Masroor Nalli, Yedukondalu Jain, Shreyans K Chaubey, Asha Ali, Asif Strobel, Gary A Vishwakarma, Ram A Riyaz-Ul-Hassan, Syed eng 2016/12/08 Microb Ecol. 2017 May; 73(4):954-965. doi: 10.1007/s00248-016-0901-y. Epub 2016 Dec 6"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 29-06-2024