Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractEffect of environmental conditions on the alpha-glucosidase inhibitory activity of mulberry leaves    Next Abstract"A novel GTP-binding protein, Sar1p, is involved in transport from the endoplasmic reticulum to the Golgi apparatus" »

Biosens Bioelectron


Title:"Data-driven design of a multiplexed, peptide-sensitized transistor to detect breath VOC markers of COVID-19"
Author(s):Nakano-Baker O; Fong H; Shukla S; Lee RV; Cai L; Godin D; Hennig T; Rath S; Novosselov I; Dogan S; Sarikaya M; MacKenzie JD;
Address:"University of Washington Dept. of Materials Science and Engineering, USA. Electronic address: onb@uw.edu. University of Washington Dept. of Materials Science and Engineering, USA. University of Washington Dept. of Biochemistry, USA. University of Washington Dept. of Atmospheric Chemistry, USA. University of Washington Depts. of Mechanical Engineering, Occupational and Environmental Health Sciences, USA. University of Washington School of Dentistry, USA. University of Washington Depts. of Materials Science and Engineering, Chemical Engineering, Oral Health Sciences, USA. University of Washington Depts. of Materials Science and Engineering, Mechanical Engineering, USA"
Journal Title:Biosens Bioelectron
Year:2023
Volume:20230320
Issue:
Page Number:115237 -
DOI: 10.1016/j.bios.2023.115237
ISSN/ISBN:1873-4235 (Electronic) 0956-5663 (Print) 0956-5663 (Linking)
Abstract:"Exhaled human breath contains a rich mixture of volatile organic compounds (VOCs) whose concentration can vary in response to disease or other stressors. Using simulated odorant-binding proteins (OBPs) and machine learning methods, we designed a multiplex of short VOC- and carbon-binding peptide probes that detect a characteristic 'VOC fingerprint'. Specifically, we target VOCs associated with COVID-19 in a compact, molecular sensor array that directly transduces vapor composition into multi-channel electrical signals. Rapidly synthesizable, chimeric VOC- and solid-binding peptides were derived from selected OBPs using multi-sequence alignment with protein database structures. Selective peptide binding to targeted VOCs and sensor surfaces was validated using surface plasmon resonance spectroscopy and quartz crystal microbalance. VOC sensing was demonstrated by peptide-sensitized, exposed-channel carbon nanotube transistors. The data-to-device pipeline enables the development of novel devices for non-invasive monitoring, diagnostics of diseases, and environmental exposure assessment"
Keywords:Humans *Biosensing Techniques *COVID-19/diagnosis *Volatile Organic Compounds/chemistry Environmental Exposure Surface Plasmon Resonance Breath Tests/methods Carbon nanotube transistor Molecular design Multiplex biosensors Odorant binding proteins Solid-b;
Notes:"MedlineNakano-Baker, Oliver Fong, Hanson Shukla, Shalabh Lee, Richard V Cai, Le Godin, Dennis Hennig, Tatum Rath, Siddharth Novosselov, Igor Dogan, Sami Sarikaya, Mehmet MacKenzie, J Devin eng U01 HL152401/HL/NHLBI NIH HHS/ England 2023/03/26 Biosens Bioelectron. 2023 Jun 1; 229:115237. doi: 10.1016/j.bios.2023.115237. Epub 2023 Mar 20"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 29-06-2024