Title: | Fall Armyworm-Associated Gut Bacteria Modulate Plant Defense Responses |
Author(s): | Acevedo FE; Peiffer M; Tan CW; Stanley BA; Stanley A; Wang J; Jones AG; Hoover K; Rosa C; Luthe D; Felton G; |
Address: | "1 Department of Entomology, The Pennsylvania State University, 501 Agricultural Sciences and Industries Building, University Park, 16802, U.S.A. 2 Section of Research Resources, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, 17033, U.S.A. 3 Department of Ecology, South China Agricultural University, Guangzhou, Guangdong 510640, China. 4 Department of Plant Pathology, The Pennsylvania State University, 321 Buckhout Lab; and. 5 Department of Plant Science, The Pennsylvania State University, 216 Agricultural Sciences and Industries Building" |
Journal Title: | Mol Plant Microbe Interact |
DOI: | 10.1094/MPMI-11-16-0240-R |
ISSN/ISBN: | 0894-0282 (Print) 0894-0282 (Linking) |
Abstract: | "Mechanical damage caused by insect feeding along with components present in insect saliva and oral secretions are known to induce jasmonic acid-mediated defense responses in plants. This study investigated the effects of bacteria from oral secretions of the fall armyworm Spodoptera frugiperda on herbivore-induced defenses in tomato and maize plants. Using culture-dependent methods, we identified seven different bacterial isolates belonging to the family Enterobacteriacea from the oral secretions of field-collected caterpillars. Two isolates, Pantoea ananatis and Enterobacteriaceae-1, downregulated the activity of the plant defensive proteins polyphenol oxidase and trypsin proteinase inhibitors (trypsin PI) but upregulated peroxidase (POX) activity in tomato. A Raoultella sp. and a Klebsiella sp. downregulated POX but upregulated trypsin PI in this plant species. Conversely, all of these bacterial isolates upregulated the expression of the herbivore-induced maize proteinase inhibitor (mpi) gene in maize. Plant treatment with P. ananatis and Enterobacteriaceae-1 enhanced caterpillar growth on tomato but diminished their growth on maize plants. Our results highlight the importance of herbivore-associated microbes and their ability to mediate insect plant interactions differently in host plants fed on by the same herbivore" |
Keywords: | Animals Bacteria/isolation & purification *Gastrointestinal Microbiome Herbivory Insect Proteins/metabolism Larva/growth & development Solanum lycopersicum/*immunology/parasitology Saliva/enzymology Salivary Proteins and Peptides/metabolism Spodoptera/*mi; |
Notes: | "MedlineAcevedo, Flor E Peiffer, Michelle Tan, Ching-Wen Stanley, Bruce A Stanley, Anne Wang, Jie Jones, Asher G Hoover, Kelli Rosa, Cristina Luthe, Dawn Felton, Gary eng IOS-1256326/National Science Foundation/International Research Support, U.S. Gov't, Non-P.H.S. 2016/12/28 Mol Plant Microbe Interact. 2017 Feb; 30(2):127-137. doi: 10.1094/MPMI-11-16-0240-R. Epub 2017 Feb 16" |