Title: | Drought affects carbon partitioning into volatile organic compound biosynthesis in Scots pine needles |
Author(s): | Kreuzwieser J; Meischner M; Grun M; Yanez-Serrano AM; Fasbender L; Werner C; |
Address: | "Chair of Ecosystem Physiology, Albert-Ludwigs-Universitat Freiburg, Freiburg, 79110, Germany. Institute of Environmental Assessment and Water Research (IDAEA), Spanish Research Council (CSIC), Barcelona, 08034, Spain. Center for Ecological Research and Forestry Applications (CREAF), Cerdanyola del Valles, 08193, Spain. Global Ecology Unit, CREAF-CSIC-UAB, Cerdanyola del Valles, 08193, Spain" |
ISSN/ISBN: | 1469-8137 (Electronic) 0028-646X (Linking) |
Abstract: | "The effect of drought on the interplay of processes controlling carbon partitioning into plant primary and secondary metabolisms, such as respiratory CO(2) release and volatile organic compound (VOC) biosynthesis, is not fully understood. To elucidate the effect of drought on the fate of cellular C sources into VOCs vs CO(2) , we conducted tracer experiments with (13) CO(2) and position-specific (13) C-labelled pyruvate, a key metabolite between primary and secondary metabolisms, in Scots pine seedlings. We determined the stable carbon isotope composition of leaf exchanged CO(2) and VOC. Drought reduced the emission of the sesquiterpenes alpha-farnesene and beta-farnesene but did not affect (13) C-incorporation from (13) C-pyruvate. The labelling patterns suggest that farnesene biosynthesis partially depends on isopentenyl diphosphate crosstalk between chloroplasts and cytosol, and that drought inhibits this process. Contrary to sesquiterpenes, drought did not affect emission of isoprene, monoterpenes and some oxygenated compounds. During the day, pyruvate was used in the TCA cycle to a minor degree but was mainly consumed in pathways of secondary metabolism. Drought partly inhibited such pathways, while allocation into the TCA cycle increased. Drought caused a re-direction of pyruvate consuming pathways, which contributed to maintenance of isoprene and monoterpene production despite strongly inhibited photosynthesis. This underlines the importance of these volatiles for stress tolerance" |
Keywords: | Carbon Droughts *Pinus sylvestris Seedlings *Volatile Organic Compounds Pinus sylvestris carbon partitioning crosstalk drought position-specific isotope labelling terpenes volatile organic compounds (VOCs); |
Notes: | "MedlineKreuzwieser, Jurgen Meischner, Mirjam Grun, Michel Yanez-Serrano, Ana Maria Fasbender, Lukas Werner, Christiane eng Research Support, Non-U.S. Gov't England 2021/09/16 New Phytol. 2021 Dec; 232(5):1930-1943. doi: 10.1111/nph.17736. Epub 2021 Sep 30" |