Title: | Novel Set-Up for Low-Disturbance Sampling of Volatile and Non-volatile Compounds from Plant Roots |
Author(s): | Eilers EJ; Pauls G; Rillig MC; Hansson BS; Hilker M; Reinecke A; |
Address: | "Department of Applied Zoology/Animal Ecology, Freie Universitat Berlin, Haderslebener Strasse 9, 12163, Berlin, Germany, eeilers@zedat.fu-berlin.de" |
DOI: | 10.1007/s10886-015-0559-9 |
ISSN/ISBN: | 1573-1561 (Electronic) 0098-0331 (Print) 0098-0331 (Linking) |
Abstract: | "Most studies on rhizosphere chemicals are carried out in substrate-free set-ups or in artificial substrates using sampling methods that require an air flow and may thus cause disturbance to the rhizosphere. Our study aimed to develop a simplified and inexpensive system that allows analysis of rhizosphere chemicals at experimentally less disturbed conditions. We designed a mesocosm in which volatile rhizosphere chemicals were sampled passively (by diffusion) without air- and water flow on polydimethylsiloxane-(PDMS) tubes. Dandelion (Taraxacum sect. ruderalia) was used as model plant; roots were left undamaged. Fifteen volatiles were retrieved from the sorptive material by thermal desorption for analysis by gas chromatography/mass spectrometry (GC/MS). Furthermore, three sugars were collected from the rhizosphere substrate by aqueous extraction and derivatized prior to GC/MS analysis. In order to study how the quantity of detected rhizosphere compounds depends on the type of soil or substrate, we determined the matrix-dependent recovery of synthetic rhizosphere chemicals. Furthermore, we compared sorption of volatiles on PDMS tubes with and without direct contact to the substrate. The results show that the newly designed mesocosm is suitable for low-invasive extraction of volatile and non-volatile compounds from rhizospheres. We further highlight how strongly the type of substrate and contact of PDMS tubes to the substrate affect the detectability of compounds from rhizospheres" |
Keywords: | "Analytic Sample Preparation Methods/economics/*methods Dimethylpolysiloxanes/chemistry Environment, Controlled Gas Chromatography-Mass Spectrometry Hydrophobic and Hydrophilic Interactions Plant Roots/*chemistry Rhizosphere Soil/chemistry Taraxacum/chemis;" |
Notes: | "MedlineEilers, Elisabeth J Pauls, Gerhard Rillig, Matthias C Hansson, Bill S Hilker, Monika Reinecke, Andreas eng Research Support, Non-U.S. Gov't 2015/03/22 J Chem Ecol. 2015 Mar; 41(3):253-66. doi: 10.1007/s10886-015-0559-9. Epub 2015 Mar 22" |