Title: | Molecular breath-gas analysis by online mass spectrometry in mechanically ventilated patients: a new software-based method of CO(2)-controlled alveolar gas monitoring |
Author(s): | Dolch ME; Frey L; Hornuss C; Schmoelz M; Praun S; Villinger J; Schelling G; |
Address: | "Department of Anesthesiology, Ludwig-Maximilians-University of Munich, Hospital Grosshadern, Marchioninistr. 15, 81377 Munchen, Germany" |
DOI: | 10.1088/1752-7155/2/3/037010 |
ISSN/ISBN: | 1752-7155 (Print) 1752-7155 (Linking) |
Abstract: | "Analysis of volatile organic compounds (VOCs) in exhaled breath offers diagnostic potential in research and clinical medicine. Mass spectrometry of expiratory air allows VOC measurements in a concentration range from parts per trillion to parts per million. For the reduction of dilution-related measurement errors due to dead space admixture, the precise identification of the end-expiratory phase of expiration is essential. We used a combination of two integrated MS systems consisting of a conventional MS capable of fast CO(2) tracing controlling a second, highly sensitive MS for the measurement of VOCs based on ion-molecule-reaction-MS (IMR-MS). This study intended to test the applicability of a software-based method of CO(2)-controlled alveolar breath-gas sampling in 12 ventilated patients using acetaldehyde, acetone, ethanol and isoprene as target VOCs (IMR-MS compound integration time 500 ms, cycle time 2 ms, measurement time 120 min). CO(2)-controlled versus mixed inspiratory/expiratory results are as follows: acetaldehyde 71* (61-133) versus 63 (47-87); acetone 544* (208-1174) versus 504 (152-950); ethanol 133 (99-166) versus 123 (108-185); isoprene 118* (69-253) versus 58 (44-112) (values in ppbv as medians with 25-75%; *p < 0.05 versus mixed inspiratory/expiratory values). The applied software-based CO(2)-controlled sampling method of expiratory air resulted in significant higher concentrations of acetaldehyde, acetone and isoprene" |
Notes: | "PubMed-not-MEDLINEDolch, M E Frey, L Hornuss, C Schmoelz, M Praun, S Villinger, J Schelling, G eng England 2008/09/01 J Breath Res. 2008 Sep; 2(3):037010. doi: 10.1088/1752-7155/2/3/037010. Epub 2008 Sep 8" |