Title: | Biodegradability of imidazolium and pyridinium ionic liquids by an activated sludge microbial community |
Author(s): | Docherty KM; Dixon JK; Kulpa CF; |
Address: | "Department of Biological Sciences, University of Notre Dame, PO Box 369, Notre Dame, IN 46556, USA. docherty.3@nd.edu" |
DOI: | 10.1007/s10532-006-9081-7 |
ISSN/ISBN: | 0923-9820 (Print) 0923-9820 (Linking) |
Abstract: | "Ionic liquids (ILs) are novel organic salts that have enormous potential for industrial use as green replacements for harmful volatile organic solvents. Varying the cationic components can alter the chemical and physical properties of ILs, including solubility, to suit a variety of industrial processes. However, to complement designer engineering, it is crucial to proactively characterize the biological impacts of new chemicals, in order to fully define them as environmentally friendly. Before introduction of ILs into the environment, we performed an analysis of the biodegradability of six ILs by activated sludge microorganisms collected from the South Bend, Indiana wastewater treatment plant. We examined biodegradability of 1-butyl, 1-hexyl and 1-octyl derivatives of 3-methyl-imidazolium and 3-methyl-pyridinium bromide compounds using the standard Organisation for Economic Cooperation and Development dissolved organic carbon Die-Away Test, changes in total dissolved nitrogen concentrations, and 1H-nuclear magnetic resonance analysis of initial and final chemical structures. Further, we examined microbial community profiles throughout the incubation period using denaturing gradient gel electrophoresis (DNA-PCR-DGGE). Our results suggest that hexyl and octyl substituted pyridinium-based ILs can be fully mineralized, but that imidazolium-based ILs are only partially mineralized. Butyl substituted ILs with either cation, were not biodegradable. Biodegradation rates also increase with longer alkyl chain length, which may be related to enhanced selection of a microbial community. Finally, DGGE analysis suggests that certain microorganisms are enriched by ILs used as a carbon source. Based on these results, we suggest that further IL design and synthesis include pyridinium cations and longer alkyl substitutions for rapid biodegradability" |
Keywords: | Electrophoresis Imidazoles/chemistry/*metabolism *Ionic Liquids/chemistry Magnetic Resonance Spectroscopy Molecular Structure Pyridines/chemistry/*metabolism Sewage/*microbiology; |
Notes: | "MedlineDocherty, Kathryn M Dixon, JaNeille K Kulpa, Charles F Jr eng Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. Netherlands 2006/11/09 Biodegradation. 2007 Aug; 18(4):481-93. doi: 10.1007/s10532-006-9081-7. Epub 2006 Nov 8" |